
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science & Engineering

Building Secure
Information Systems

Dissertation

Study Branch: Information and Computer Science

Supervisor: Doc.ing. Karel Richta, CSc.

Postgraduate Student: Suzana Stojaković- Čelustka, MSc.

Prague, 2000.

Abstract

The Part I of the thesis describes security problems in today’s information systems.
They are numerous because today’s information systems were not built with security
requirements from the beginning. There are also many protection tools, which are
designed to protect more or less efficiently information systems from malicious
activities. However, even the best protection systems have their vulnerabilities.

The security weaknesses include the very basics of today’s computing and network
systems, such as binary logic and von Neumann’s architecture. The universality of
von Neumann’s architecture, which is very convenient from the user’s point of view,
is inconvenient regarding security requirements. It is important to stress that anything,
which can be programmed, may be programmed to perform malicious activities in the
system and it is very difficult to discern such an attempt from the “normal” activities
before some damage is done.

Binary logic is a basic of today’s computing, i.e. everything is performed through the
sequences of zeros and ones. While it makes computing easy, it is an obstacle
considering security requirements for exact pattern recognition. Although there are
the methods to circumvent this inconvenient bound, it still remains the problem,
which can be solved in satisfactory way by changing the binary logic to multivalued
logic.

Having in mind these two major obstacles to information systems security, in the
Part II of the thesis some other possibilities in the logic and architecture are offered so
to have security requirements built from the start in information systems.

The Part II describes the ways on how to build secure information systems. The
suggested basis of the secure information system is an intelligent security system. The
term "intelligent" in the name of this security system does not indicate that the other
security systems are non-intelligently constructed or designed. It simply means that
this security system should have some intelligent capabilities such as the ability to
learn or understand from experience, the ability to acquire and retain knowledge,
the ability to respond quickly and successfully to a new situation, the ability to make
proper decisions, etc.

The main goal of so proposed intelligent security system is to emulate an intelligent
reaction to any suspicious action, which might occur in the information system. For
that purpose the prototype with working name Nisan was developed and it is
presented in detail in this thesis. It was shown that realization of theoretical concept is
possible and that it gives satisfying results, even in this early phase of development.

It is shown that this intelligent system can be implemented in various kinds of current
and future architectures considering corresponding advantages and constraints. It is
supposed that realization of such an intelligent security system in any kind of
information structures would be great advantage in the security of information
systems.

Acknowledgements

In the first place, I would like to thank to my mentor, professor Dr Karel Richta, for
his engagement, valuable suggestions and great support, which helped me in writing
this thesis. I would also like to thank to professor Dr Melichar, who gave me
opportunity to perform my somewhat unusual research on Department of Computer
Science and Engineering, Faculty of Electrical Engineering, Czech Technical
University of Prague. I must make special mention of professor Dr Kolar's final
suggestions on the ways of how to finish this thesis for which I am especially grateful.

I am also grateful to all professors and staff of Department of Computer Science and
Engineering for their advises and patient tolerance of my sometimes dangerous
experiments with computer viruses and other types of attacks.

I would also like to thank to professor Dr Brunnstein, head of Virus Test Center on
Faculty of Informatics, University of Hamburg, for allowing me to perform additional
experiments at his Department. Thanks go also to Vesselin Bontchev (now at Frisk
Software International) for his helpful support.

Special thanks go to the group of people who are not only experts in information
security field, but are also my dear friends, who were helpful during all these years:
Jon Freivald, systems architect and network engineer at Total Computer Systems,
Ltd.; David M. Chess, research staff member of IBM Tomas J. Watson Research
Center; Yaron Y. Goland, software architect at Microsoft Corporation; Jon David,
senior editor of Computer & Security; Staale Fagerland, computer virus analyst at
Norman Data Defense System AS; David Harley, Support and Security Analyst at
Imperial Cancer Research Fund; Roberto Reymond from IBM Global Services,
NWSM Security, IBM-Italy; Gord Hama of Royal Canadian Mounted Police; Paul
Ducklin, head of research in Sophos Plc.; Tim Martin from Department of Renewable
Resources at University of Alberta; Padgett Peterson; Rob Slade; Wallace Hale; Sarah
Gordon and Richard Ford.

Many thanks I owe also to Damir Delija from SRCE (University Computing Center in
Zagreb), Nevenko Bartolincic from CARNet (Croatian Academic and Research
Network) and to Peter J. Mercier from US Naval Criminal Investigative Service, for
their helpful suggestions.

My family provided me with support, love, friendship, advice, and untold other type
of assistance to my progress in this matter, and without naming them each, I would
like to thank them.

Contents

INTRODUCTION...I-1

Part I
1. INFORMATION SYSTEMS... 1-1

2. MISUSE OF INFORMATION SYSTEMS..2-1

3. PROGRAMMED THREATS...3-1

4. PROTECTION OF INFORMATION SYSTEMS..4-1

5. VULNERABILITIES IN PRESENT PROTECTION SYSTEMS.........................5-1

6. SUMMARY AND CONCLUSIONS OF PART I..6-1

Part II

7. WHAT IS SECURE INFORMATION SYSTEM...7-1

8. AN ARCHITECTURE FOR INTELLIGENT SECURITY SYSTEM..................8-1

9. MODELING AN EXPERT SYSTEM...9-1

10. IMPLEMENTING AN INTELLIGENT SECURITY SYSTEM.......................10-1

11. BUILDING SECURE INFORMATION SYSTEMS...11-1

12. SUMMARY AND CONCLUSIONS OF PART II..12-1

Part III

13. SUMMARY, CONCLUSIONS AND FURTHER WORK................................13-1

APPENDIX A - GLOSSARY OF USED TERMS..A-1

APPENDIX B - PREVENTION METHODS..B-1

APPENDIX C - SOURCE CODE OF PROTOTYPE NISAN..................................C-1

BIBLIOGRAPHY..II-1

Introduction

I - 1

INTRODUCTION

MOTIVATION

Information security is very complex field of research with a lot of unknown and
unexplored areas. Yet, it is an important field to explore. My own interest in this field
started ten years ago when I first met computer viruses. The problem of self-
reproducing threats to information integrity and availability was a challenge for me
for many years. By time I got acquainted with other information security problems,
such as break-ins, denial of service attacks, etc. From the first moment protection of
the information systems was the most important challenge, which motivated me to
persevere in this type of work.

PROBLEM STATEMENT

First of all, I would like briefly to introduce some of important questions such as:
what is information, what is information age, what is and why we should have
information security.

What is Information?

It is not an easy task to define what is really meaning of the term "information".
Intuitively, information is sequence of symbols, which have some meaning to the
person receiving it. People communicate by exchanging information among them.

The importance of information can be valued quantitatively, depending on the
context. Sometimes information can be valued through monetary amount and that
aspect makes exchange of information very important in today's human society.

Information Age

The human society is undergoing a fundamental transformation: from an industrial
society to the information society. Information age technologies increasingly pervade
all industrial and societal activities and are accelerating the globalization of
economies.

World's industrial competitiveness, its jobs, its quality of life and the sustainability of
growth depend on it being at the leading edge of the development and take-up of
information age technologies. At the same time, the technologies underpinning the
development of the information society are in rapid evolution. Advances in
information processing and communication are opening up exciting new possibilities.
There is a shift from stand-alone systems to networked information and processes.

Introduction

I - 2

Information Age and the Internet

In the age when communications and media have tremendous impact on our lives,
information and information technologies are becoming more and more important.
Internet as a “network of networks” is becoming the most popular media for the
information transfer.

Neither information nor control over them is reserved for a small number of experts.
In the age of information everybody needs and uses information. That is why Internet
is not only a tool of the modern age, it is also its symptom. Fast information exchange
in almost every segment of our daily life helped the Internet to move on from an
oddity to the most popular medium.

The Internet is growing faster than previously thought. Internet’s user population is
growing 175 % per year [69].

The Internet is going commercial. Saving money and energy is an essential part of
every business. That is why electronic commerce and on-line money making is
becoming more and more popular. There is a rapid expansion of the Internet with
commercial users such as companies, banks, brokerage companies, airlines, retail
establishments, and most computer hardware and software companies. It also includes
personal accounts held by users of various on-line service providers such as America
On-line, Prodigy, CompuServe etc. The explosive growth of global computer
networking is revolutionizing business and economy and the way individuals shop for
products and services and engage in entertainment and education.

Information Security

Security has always been an important part of our everyday life. Throughout the
history people have tried to protect their property and privacy. With the advance of
technology and growth of industry it has become an even more important aspect.

Why information security?

Even in the age when there were no computers and no Internet information, the
control over information was a significant factor in the prosperity of the business.
Now, more than ever, since business is more and more relying on information
technology it is important to protect that information. The same is true for doing
business on the Internet. Every business must be secure and reliable to be successful.
One has to find ways to prevent information security breaches and allow performing
secure, reliable transactions on the Internet.

A November 1997. report released by the Permanent Investigations Sub-Committee
of the US senate estimated that business lost around US $ 800 million in 1995.

Introduction

I - 3

through break-ins to computer systems at banks, hospitals and other large businesses.
[69]

The study found variation in the types of attacks, confirming fears that information
security breaches are no longer the domain of relatively harmless, curious hackers, but
are increasingly being conducted by disgruntled employees, professional criminals
and industrial spies. These findings indicate a direct correlation between the level of
security penetrations and the level of workplace dependence on information
technology. Therefore, computer crime is expected to escalate in industries increasing
their reliance on high information technology.

What is information security?

The world of business is a significant information security challenge. It is not an easy
task to protect and control information. One has to deal with such complex issues as
computer crime, data privacy, copyright, etc. The ultimate goal is to have a secure,
reliable and correct information.

Confidentiality, integrity and availability of the information typically characterize the
information security. Confidentiality means controlled release of information and
protection from unauthorized access. Integrity represents the control of modifications
and correct and authorized information transactions. Availability means that
information is available when required and that denial of service will not occur.

Information technology has enabled organizations to work more effectively, but
alongside the benefits arise also security risks and threats to confidentiality, integrity
and availability of information. To protect information resources of an organization it
is necessary to recognize the threats and come to grips with them. Threats range from
human error to theft, vandalism, computer crime, natural disaster, to name but a few.
For example, threats to confidentiality arise from cracking, stealing information, fraud
by internal and external access. Threats to integrity represent a processing of incorrect
data due to equipment failure, software and human errors, malicious damage and
fraud. Threats to availability arise due to equipment failure or overload, denial of
service, malicious damage, theft of resources, etc.

New technologies have unfortunately revealed new vulnerabilities. Portable
computing, telecommuting and remote access services have spread the problem way
beyond the individual organizations. The addition to the problem is also a rapidly
changing marketplace on which trends appear and disappear very quickly. This
circumstance causes the immature technologies to be implemented before their effect
on security has been examined and understood.

Countermeasures include reducing the vulnerabilities of a system and the threats to
the system. It is necessary to have the defense against the threats by reducing
likelihood of the threat happening and the impact of the potential security incident by
limiting its effect. Naturally, it is very hard to ensure a complete and foolproof
security system. There is no single technical solution yet, which would assure
absolute information security.

Introduction

I - 4

The information security system must always integrate various methods of protection,
ranging from physical security and administrative measures to implementation of
sophisticated protection tools.

RELATED WORK

Most of my articles and lectures are related to computer viruses problems [64], [65],
[68] as well as my M. Sc. thesis [31]. My minimal thesis [67] deals with that problem
too. I have spent a lot of time on research in computer virus behavior and possible
ways of protection.

However, my work extends to other ways of information security threats as well.
Since 1993. I was also researching various ways of break-ins on Department of
Computer Science & Engineering of Czech Technical University in Prague. In the late
1993. I was a guest of Faculty of Informatics in Hamburg where, after two weeks of
experimental work, I had a lecture about vulnerabilities in Internet services [66].

Since 1994., I am an active member of the IFIP working group 9.6., which concerns
the problems of information technology misuse and the laws.

In the period May, 1997. – November, 1998. I was actively working as a network
security consultant for Croatian Academic and Research Network (CARNet). My
duties included managing CARNet CERT (Computer Emergency Response Team)
where I could implement my theoretical knowledge of vulnerabilities and protection
measures in practice. During that period I have also prepared several courses and
lectures about information security, as well as an article for FIRST (Forum of Incident
Response Teams) 1998. Conference [69].

Working as a security consultant I have found an interesting fact concerning the age
of attackers to information systems. It appeared that in an academic network
perpetrators were mostly teenagers, with a little knowledge about information systems
themselves. Working currently in high school educational system, from where most
attackers come from, I am trying to teach my students not only about information
technology basics, but also about ethical behavior in an information world of today. I
believe that teaching young people how to use information systems properly and
ethically can prevent future information technology misuse.

CONTRIBUTION OF THE THESIS

 Although my previous work was in great extent related to computer viruses, that type
of threats to information security is not the only one considered in this thesis. I am
trying to cover in the thesis as wide area as possible. The main problem in achieving
this is that in today’s information security field there is neither uniform formal
apparatus nor terminology, which could consistently cover such a complex area. I
tried throughout this thesis to preserve consistent formalism to describe very various
topics.

Introduction

I - 5

A model of adaptive automated protection system is introduced in the thesis. It does
not exist yet, except as a concept. It is ultimate model, which has sense in today’s
information systems. Yet, even this model contains several vulnerabilities, which are
clearly stated.

General problem is, however, how to build secure information systems in the future
and the thesis tries to gives some answers to that problem. The main assumption is
that today’s systems are weak from that point of view and not built with the security
requirements from the beginning.

The aim of the thesis is to offer some other possibilities in the logic and architecture
of computing/information systems so to have security built in from the start. It is a
difficult task to grasp with and the thesis certainly cannot give all possible solutions.
The solution offered in this thesis is the concept and working prototype of an
intelligent security system. That concept is the result of practical work on security
problems during the years and its prototype is developed in hope to significantly
improve the security of the information systems today and in the future.

ORGANIZATION OF THE THESIS

This thesis is divided into three parts:

Part I, Security Problems in Today’ s Information Systems
This part introduces the security problems and methods of protections in today’s
information systems and summarizes the vulnerabilities of present protection systems.

Chapter 1, Information Systems, presents the concept of information, information
system and computing system, as well as of information networks and Internet.

Chapter 2, Misuse of Information Systems describes how the information systems
can be attacked.

Chapter 3, Programmed Threats, describes some of the most frequent programmed
attacks

Chapter 4, Protection of Information Systems, describes methods of protection,
prevention, non-adaptive protection systems and adaptive automated protection
systems as ultimate protection solutions in today’s information systems.

Chapter 5, Vulnerabilities of Present Protection Systems, provides an overview of
the vulnerabilities of today’s protection systems and inherent security holes in today’s
information systems.

Chapter 6, Summary and Conclusions of the Part I, gives the short summary and
conclusions of the first part.

Introduction

I - 6

Part II, Building Secure Information Systems
This part looks at the ways how to build future information systems so to obtain
maximum security.

Chapter 7, What is Secure Information System?, presents the semantic definition of
information, discusses what is secure information and gives the definition of secure
information system.

Chapter 8, An Architecture for Intelligent Security Systems, introduces the concept
and the architecture of an intelligent security system.

Chapter 9, Modeling an Expert System, introduces the theoretical model for the
expert system of an intelligent security system.

Chapter 10, Implementing an Intelligent Security System, presents the prototype of
an intelligent security system.

Chapter 11, Building Secure Information Systems, describes the ways for building
secure information systems with an intelligent security system. Some other aspects of
information security, such as human interface and privacy protection, are briefly
introduced.

Chapter 12, Summary and Conclusions of the Part II, gives the short summary and
conclusions of the second part.

Part III, Summary, Conclusions and further Work,
This part contains only one chapter (Chapter 13) which gives a summary and
conclusions of the thesis as well as directions for further work.

Bibliography contains a listing of resources used for this thesis.

Appendices:

Appendix A – Glossary of Used Terms
Appendix B – Prevention Methods
Appendix C - Source Code of Prototype Nisan

PART ONE

Security Problems in Today's
Information Systems

Chapter 1 Information Systems

1-1

1. INFORMATION SYSTEMS

1.1. Concept of Information

Suppose that some event, which realization is uncertain, occurs. It is not predetermined and is
not known in advance. When that event happens and when we know something about it,
intuitively we consider that we have received some information. In the essence of the very
concept of information there is some uncertainty included, which is eliminated by receiving
the information. Anyway, even before the event happens, the observer is formulating his or
her expectation about the realization of the event. The mentioned concepts: uncertainties,
expectation, assumptions, related to the concept of information, lead us to its connection to
probability theory.

The information could be represented by functional relation of probability, under assumption
that information increases when probability of the event decreases and vice versa. Since
information eliminates uncertainty, then to lower probability would correspond greater
uncertainty and smaller expectation.

The suitable definition of information might be that information represents the degree of
freedom in choice of message from the set of all possible messages.

Unit of information is called “bit” (an abbreviation of binary digit). The quantity of
information of 1 bit is included in the message, considering that the degree of freedom was
the choice from two possible messages (0 or 1).

Semantic aspect of information, which concerns the contents or sense of the message is
excluded from this concept of information. It will be discussed later in Part II of the thesis.

1.2. Information System

General information system consists of the source of information, encoder of
information, communication (transmission) channel, decoder and receiver of
information as it is shown on the Figure 1.2.1.

Figure 1.2.1. General information system

The source of information can be described by set of pairs {xi, p(xi)}, i=1,2,...n,
where xi denotes one of n messages, which might appear on the source, while p(xi)
denotes probability of appearance of that message. The quantity of information can be
represented as in [28]:

SOURCE ENCODER TRANSMISSION
CHANNEL

DECODER RECEIVER

Chapter 1 Information Systems

1-2

 I (xi) = - log2 p(xi) = -ld p(xi) (1.2.1)

The average quantity of information on the source is [28]:

 (1.2.2)
The average quantity of information is the quantity of information, which is needed in
average to determine any individual symbol or message from the set X of all possible
symbols or messages which are transmitted through communication channel. The
quantity I(X) is also called the entropy of discrete stochastic quantity X and is
designated as H(X) [28].

Quality of communication can be expressed via quantity of information flow, which
can be transmitted through communication channel with errors (noise). It is the
quantity of information, which belongs to the set of received messages {Y} and is
uniquely related to the set of sent messages {X}. Quantity of information transmitted
through the communication channel with errors is called transinformation and can be
expressed as [28]:

 I (X;Y) = I(X) – I(X/Y) = I(Y) – I(Y/X) (1.2.3)

The pairs {xi,p(xi)}, i = 1,2,...n, describe set of messages on input{X}, while the
pairs{yj,p(yj)}, j = 1,2,...m, belong to the set of messages {Y} on the output of the
communication channel (Figure 1.2.2.).

Figure 1.2.2. Communication channel with errors

Relation (1.2.3) represents the loss of input information due to errors/noise in
communication channel, viewed from the input or the output of the channel. It may be
described through conditional probabilities p(xi/yj) or p(yj/xi), which give the
quantities of lost information.

 (1.2.4)

 (1.2.5)

)()()()(
1

XHxldpxpXI
n

i
ii ====−−−−==== ����

====

��������
========

−−−−====
m

j
jiiji

n

i
yxldpxypxpYXI

11
)/()/()()/(

��������
========

−−−−====
m

j
ijjij

n

i
xyldpyxpypXYI

11
)/()/()()/(

SOURCE ENCODER TRANSMISSION
CHANNEL

DECODER RECEIVER

(X)
xi p(xi)

(Y)
yj p(yj)

ERRORS
(NOISE)

Chapter 1 Information Systems

1-3

1.3. Computing System

The information system represented on Figure 1.3.1. consists of the computing
system, which is the source of information, standard input/output device as
communication channel and a user of computing system as the receiver of
information. The communication flows in two ways, so the computing system may be
also a receiver of information and user may be the source of information.

Figure 1.3.1. Information system with computing system

Today’s computing systems are mostly based on von Neumann’s architecture
(Figure 1.3.2.)

Figure 1.3.2. Von Neumann’s architecture of computing system

The basic characteristics of von Neumann’s architecture are following:

1. The computing system consists of:
- memory
- control unit
- arithmetic-logic unit
- input unit
- output unit

Computing
System Standard Input/Output Device

User

Input unit Output unit

Control unit

Arithmetic -
logic unit

Processor

Data and

Control
signals

Memory Results

Re
su

lts

In
st

ru
ct

io
ns

A
rg

um
en

ts

Data and
instructions

Inst ruct ions

Chapter 1 Information Systems

1-4

2. The structure of the computing system is universal, i.e. it does not depend on the
task being performed. The computing system is programmed to perform the
particular task.

3. The program is a sequence of instructions, which are performed as they are
written in the memory.

4. The binary digits (binary logic) are used to represent the instructions and data
(operands, results, addresses, etc.) in computing system.

1.4. Information Networks

Information network is set of devices and programmable elements, which perform
operations of transmission, commutation and processing [29]. The devices and
programmable elements are mutually connected with fixed or variable connections to
form the system, which performs requested information services.

Transmission is a transfer of particular quantity of information between the
determined points of the information space.

Commutation is directing (routing) information units to determined paths, which
interconnect points of the information space.

Processing is performing specific algorithms, defined by programming language, to
change the contents of information units.

The three mentioned operations may be performed on users’ or controlling
information.

General model of information network is presented on Figure 1.4.1.

The information network consists of three basic parts: input/output units, service
units and control units.

Input/output units perform collection and transmission of information to/from users
on terminal devices.

Service units perform all three before mentioned operations, i.e. transmission,
commutation and processing of information.

Control units perform control and routing of information flow in regard to specific
criteria of quality.

Chapter 1 Information Systems

1-5

Figure 1.4.1. General model of information network

1.5. Internet

The Internet technology plays the main role in today's information network
technology. The term Internet is used to denote a collection of packet switching
information networks interconnected by gateways and routers along with protocols
that allow them to function logically as a single, large, virtual network.

The communication across any set of interconnected networks is based on Internet
Protocol Suite.

Chapter 1 Information Systems

1-6

1.5.1. Internetworking Concept

The technology, called internetworking or internetting, accommodates multiple,
diverse underlying hardware technologies by adding both physical connections and a
new set of conventions. The primary goal of Internet technology is to hide the details
of network hardware and to permit computers to communicate independently of their
physical network connections. Furthermore, all machines in the Internet have to share
a universal set of machine identifiers (which can be thought of as names or
addresses). That is, the set of operations used to establish communication or to
transfer data to remain independent on underlying network technologies and the
destination machines is demanded.

1.5.2. Internet Architecture

Physically, two networks can only be connected by a device that attaches to both of
them. Devices that interconnect two networks and pass packets from one to the other
are called internet gateways or internet routers. Gateways route packets based on
destination network, not on destination host (host is any end-user computer system
that connects to a network). If routing is based on networks, the amount of
information that a gateway needs to keep is proportional to the numbers of networks
in the internet, not the number of machines.

The fundamental concept of Internet architecture is: from the Internet point of view,
any communication system capable of transferring packets counts as a single network,
independent of its delay and throughput characteristics, maximum packet size, or
geographic scale.

A user thinks of the Internet as a single virtual network that interconnects all hosts,
and through which communication is possible. Its underlying architecture is both
hidden and irrelevant to the user.

1.5.3. Internet Protocol

In a sense, protocols are to communication on the Internet what programming
languages are to computation. A programming language allows one to specify or
understand a computation without knowing the details of any particular CPU
instruction set. Similarly, a communication protocol allows one to specify or
understand data communication without depending on detailed knowledge of a
particular vendor's network hardware.

A protocol is a formal description of message formats and the rules two or more
machines must follow to exchange those messages. Protocols can describe low-level
details of machine to machine interfaces (e.g. the order in which the bits from a byte
are sent across the wire), or high-level exchanges between application programs (e.g.
the way in which two programs transfer a file across an internet).

Chapter 1 Information Systems

1-7

Complex data communication systems do not use a single protocol to handle all
transmission tasks. Instead, they require a set of cooperative protocols, sometimes
called a protocol family or protocol suite.

Internet protocol (IP) is a standard protocol that defines the IP datagram as the unit
of information passed across an Internet and provides the basis for connectionless,
best-effort packet delivery service. IP includes the ICMP control and error message
protocol as an integral part. The entire protocol suite is often referred to as TCP/IP
because TCP and IP are the two most fundamental protocols.

The term "packet" is used loosely. While some TCP/IP literature uses it to refer
specifically to data sent across a physical network, other literature views an entire
TCP/IP Internet as a packet switching network and describes IP datagrams as packets.

1.5.3.1. Protocol Layering

Conceptually, sending a message from an application program on one machine to an
application program on another means transferring the message down through
successive layers of protocol software on the sender's machine, transferring the
message across the network, and transferring the message up through successive
layers of protocol software on the receiver's machine.

Each layer makes decisions about the correctness of the message and chooses an
appropriate action based on the message type or destination address. In a layered
model, each layer handles one part of the communication problem and usually
corresponds to one protocol. Protocols follow the layering principle, which states that
the software implementing layer n on the destination machine receives exactly what
the software implementing layer n on the source machine sends. Layering concept
should solve on effective way the communication problems as: hardware failures,
network congestion, packet delay or loss, data corruption, data duplication or
sequence errors, etc.

Broadly speaking, TCP/IP software is organized into four conceptual layers that build
on a fifth layer of hardware:

(Hardware)
1. Network interface - comprises a network interface layer, responsible for accepting
IP datagrams and transmitting them over a specific network

2. Internet layer - handles communication from one machine to the another

3. Transport layer - provides communication from one application program to
another, it may regulate the flow of information, it may also provide reliable transport,
ensuring that data arrives without error and in sequence

4. Application layer - at the highest level, users invoke application programs that
access services available across internet, an application interacts with the transport
level protocol(s) to send and receive data and passes data in the required form to the
transport level for delivery.

Chapter 1 Information Systems

1-8

In higher layers, the layering principle applies across end-to-end transfers and at the
lowest layer it applies to single machine transfer.

1.5.3.2. Internet Services

From the user's point of view, a TCP/IP Internet appears to be a set of application
programs that use the network to carry out useful communication tasks. Most users
that access the Internet do so merely by running application programs without
understanding the TCP/IP technology, the structure of the underlying internet, or
even the path their data travels to its destination; they rely on the application programs
to handle such details. The most popular and widespread Internet application services
include: electronic mail, file transfer, remote login, etc.

A programmer who writes application programs that use TCP/IP protocols has an
entirely different point of view of an Internet than a user who merely executes
applications. At the network level, an Internet provides two broad types of service that
all application use, i.e. connectionless packet delivery service and reliable stream
transport service. (Fig 1.5.1)

Fig 1.5.1. The three conceptual layers of internet services

The more detailed description of internet services can be found in [5].

APPLICATION LEVEL INTERNET SERVICES

RELIABLE STREAM TRANSPORT SERVICES

CONNECTIONLESS PACKET DELIVERY SERVICES

NETVORK
LEVEL
INTERNET
SERVICES

Chapter 2 Misuse of Information Systems

2-1

2. MISUSE OF INFORMATION
 SYSTEMS
Information systems are usually used for benefits in communication. It is hard to
believe that someone might misuse them and damage intentionally the information
stored in information system or passing through communication channel. Yet, such
events happen all the time and it is necessary to consider them seriously.

We may consider the attacked information system as a system with errors (Fig.1.2.2.).
However, it is important to stress that this type of “errors” is not usual random errors
(noise) or “bugs” in the programs which might appear normally in information
systems. These “errors” are deliberately imported into system. Anyway, for the clarity
of explanation, we consider them in this discussion as a noise in communication. The
usual term used for this type of errors is threats to information systems.

2.1. Breaches to Physical Security

Theft and destruction of information and information equipment fall into this
category. Dumpster diving or trashing is a name given to a very simple type of
security attack – scavenging through materials that have been thrown away. Around
the offices and in the trash attackers can find used disks and tapes, discarded printouts
and handwritten notes off all kind.

Someone who shuts down service or slows it significantly is committing an offense
known as denial of service or degradation of service. There are many ways to disrupt
service, including such physical means as arson or explosions; shutting of power, air
conditioning or water (needed by air conditioning systems) or performing various
kinds of electromagnetic disturbances. Natural disasters, like lightning and
earthquakes, can also disrupt services.

2.2. Vulnerabilities in Internet Services

The Internet Protocol Suite, which is very widely used today, was developed under
the sponsorship of the Department of Defense. Despite that, there are a number of
serious security flaws inherent in the protocols.

Every day, all over the world, computer networks and hosts are being broken into.
The level of sophistication of these attacks varies widely; while it is generally
believed that most break-ins succeed due to weak passwords, there are still a large
number of intrusions that use more advanced techniques to break in.

An intruder can use Internet services to break into the system. Most of the break-ins
occur on application level services mostly due to bugs in particular applications,
although more sophisticated attacks using vulnerabilities inherent to TCP/IP protocol

Chapter 2 Misuse of Information Systems

2-2

suite are known. It would be very difficult to describe all possible ways how to
penetrate in a system, because they are too numerous. Only the characteristic ones and
documented by legal researchers will be done in the following text.

2.2.1. Vulnerabilities in Network Level Services

There are a number of serious security flaws inherent in the TCP/IP protocol suite.
Some of these flaws exist because hosts rely on IP source address for authentication;
other exist because network control mechanisms, and in particular routing protocols,
have minimal or non-existent authentication.

Two of most "popular" attacks are so called IP spoofing, i.e. false presenting on
Internet, so to avoid tracing of an intrusion, and denial of service attack on network
level. The one of methods for IP spoofing is TCP sequence number prediction
presented in following text. The very often used denial of service attack is so called
SYN flooding.

2.2.1.1. TCP Sequence Number Prediction

The TCP sequence number prediction can be used to construct a TCP packet sequence
without ever receiving any responses from the server. This allows the attacker to
spoof a trusted host on a local network.

The normal TCP connection establishment sequence involves a 3-way handshake.
The client selects and transmits an initial sequence number ISNc, the server
acknowledges it and sends its own sequence number ISNs, and the client
acknowledges that. Following those three messages, data transmission may take
place. The exchange may be shown schematically as follows:

C -> S:SYN(ISNc)
S -> C:SYN(ISNS),ACK(ISNc)
C -> S:ACK(ISNs)
C -> S: data
 and/or
S -> C: data

That is, for a conversation to take place, C must first hear ISNs, a more or less random
number.

Suppose, though, that there was a way for an intruder X to predict ISNs. In that case,
it could send the following sequence to impersonate trusted host T:

X -> S:SYN(ISNx), SRC = T
S -> T:SYN(ISNs), ACK(ISNX)
X -> S:ACK(ISNs), SRC = T
X -> S:ACK(ISNs), SRC = T, nasty_data

Chapter 2 Misuse of Information Systems

2-3

Even though the message S -> T does not go to X, X was able to know its contents,
and hence could send data. If X were to perform this attack on a connection that
allows command execution, i.e. the Berkeley rsh server, malicious command could be
executed.

How to predict the random ISN? In Berkeley systems, the initial sequence number
variable is incremented by a constant amount once per second, and by half that
amount each time a connection is initiated. Thus, if one initiates a legitimate
connection and observes the ISNs used, one can calculate, with a high degree of
confidence, ISN's used on the next connection attempt.

The reply message: S -> T:SYN(ISNs),ACK(ISNx) does not in fact vanish down a
black hole; rather, the real host T will receive it and attempt to reset the connection.
This is not a serious obstacle. By impersonating a server port on T, and by flooding
that port with apparent connection requests, one could generate queue overflows that
would make it likely that the S -> T message would be lost. Alternatively, one could
wait until T was down for routine maintenance or reboot.

To learn a current sequence number, one must send a SYN packet, and receive a
response, as follows:

X -> S:SYN(ISNx)
S -> X:SYN(ISNs),ACK(ISNx) (1)

The first spoofed packet, which triggers generation of the next sequence number, can
immediately follow the server's response to the probe packet:

X -> S:SYN(ISNx), SRC = T (2)

The sequence number ISNs used in the response:

S -> T:SYN(ISNs),ACK(ISNx)

is uniquely determined by the time between the origination of message (1) and the
receipt at the server of message (2). But this number is precisely the round-trip time
between X and S. Thus, if the spoofer can accurately measure (and predict) that time,
even a 4 µ-second clock will not defeat this attack.

2.2.1.2. SYN Flooding

This type of denial of service attack is not new, but is very often used. It was
registered in 1996. and CERT (Computer Emergency Response Center) has issued an
advisory CA-1996-21 describing that attack. Here is an excerpt from that advisory.

When a system (called the client) attempts to establish a TCP connection to a system
providing a service (the server), the client and server exchange a set sequence of
messages. This connection technique applies to all TCP connections--telnet, Web,
email, etc.

Chapter 2 Misuse of Information Systems

2-4

The client system begins by sending a SYN message to the server. The server then
acknowledges the SYN message by sending SYN-ACK message to the client. The
client then finishes establishing the connection by responding with an ACK message.
The connection between the client and the server is then open, and the service-specific
data can be exchanged between the client and the server. Here is a view of this
message flow:

Client Server
------ ------

SYN-------------------->

<--------------------SYN-ACK

ACK-------------------->

Client and server can now
send service-specific data

The potential for abuse arises at the point where the server system has sent an
acknowledgment (SYN-ACK) back to client but has not yet received the ACK
message. This is what is meant by half-open connection. The server has built in its
system memory a data structure describing all pending connections. This data
structure is of finite size, and it can be made to overflow by intentionally creating too
many partially-open connections.

Creating half-open connections is easily accomplished with IP spoofing. The
attacking system sends SYN messages to the victim server system; these appear to be
legitimate but in fact reference a client system that is unable to respond to the SYN-
ACK messages. This means that the final ACK message will never be sent to the
victim server system.

The half-open connections data structure on the victim server system will eventually
fill; then the system will be unable to accept any new incoming connections until the
table is emptied out. Normally there is a timeout associated with a pending
connection, so the half-open connections will eventually expire and the victim server
system will recover. However, the attacking system can simply continue sending IP-
spoofed packets requesting new connections faster than the victim system can expire
the pending connections.

In most cases, the victim of such an attack will have difficulty in accepting any new
incoming network connection. In these cases, the attack does not affect existing
incoming connections nor the ability to originate outgoing network connections.

However, in some cases, the system may exhaust memory, crash, or be rendered
otherwise inoperative.

2.2.1.3. Distributed Denial of Service Attacks

During the second half of 1999., several sites reported denial of service attacks
involving distributed intruder tools. In typical distributed attack system, the "intruder"
controls a small number of "masters", which in turn control a large number of

Chapter 2 Misuse of Information Systems

2-5

"daemons". These daemons can be used to launch packet flooding or other attacks
against "victims" targeted by the intruder. This is shown on Figure 2.2.1.

+----------+ +----------+
| attacker | | attacker |
+----------+ +----------+

| |
. . . --+------+---------------+------+----------------+-- . . .

| | |
| | |

+----------+ +----------+ +----------+
| master | | master | | master |
+----------+ +----------+ +----------+

| | |
| | |

. . . ---+------+-----+------------+---+--------+------------+-+-- . . .
| | | | |
| | | | |

+--------+ +--------+ +--------+ +--------+ +--------+
| daemon | | daemon | | daemon | | daemon | | daemon |
+--------+ +--------+ +--------+ +--------+ +--------+

Figure 2.2.1. Distributed denial of service attack

The typical path of attack is attacker(s) --> master(s) --> daemon(s) --> victim(s).
There are several tools for performing this type of attack, most often used are Trinoo,
TFN (Tribe Flood Network) and Stacheldraht. These attacks combine intrusion on
application level, which will be described later, with typical network level attack of
flooding.

2.2.2. Vulnerabilities in Application Level Services

The application level services can be used for different kind of attacks from gaining
information about the system to more sophisticated attacks.

2.2.2.1. Gaining Information about the System

Finger is one of services which is very appropriate to obtain the information about the
users on the system. For example, fingering "@", "0", and "", as well as common
names, such as root, bin, ftp, system, guest, demo, manager, etc., can reveal
interesting information. What that information is depends on the version of finger that
the "target" is running, but the most notable are account names, along with their home
directories and the host that they last logged in from.

Finger is one of the most dangerous services, because it is so useful for investigating a
potential target. However, much of this information is useful only when used in
conjunction with other data.

Chapter 2 Misuse of Information Systems

2-6

2.2.2.2. Getting Access

After collecting information about the system, one can try to penetrate into it. There
are many ways how to do that and only few examples will be done to show the
principle.

The tftp daemon does not require any password for authentication; if a host provides
tftp without restricting the access (usually via some secure flag set in the inetd.conf
file), an attacker can read and write files anywhere on the system. In the example, he
gets the remote password file and place it in his local /tmp directory:

 evil % tftp
 tftp> connect victim.com
 tftp> get /etc/passwd /tmp/passwd.victim
 tftp> quit

Sendmail is a very complex program that has a long history of security problems. One
can often determine the operating system, sometimes down to the version number, of
the target, by looking at the version number returned by sendmail. This, in turn, can
give hints as to how vulnerable it might be to any of the numerous bugs. In addition,
one can see if they run the "decode" alias, which has its own set of problems:

 evil % telnet victim.com 25
 connecting to host victim.com (128.128.128.1.), port 25
 connection open
 220 victim.com Sendmail Sendmail 5.55/victim ready at Fri, 6 Nov 93 18:00 PDT
 expn decode
 250 <"|/usr/bin/uudecode">
 quit

Running the "decode" alias is a security risk -- it allows potential attackers to
overwrite any file that is writable by the owner of that alias - often daemon, but
potentially any user. The following piece of mail will place "evil.com" in user zen's
.rhosts file if it is writable:

 evil % echo "evil.com" | uuencode /home/zen/.rhosts | mail decode@victim.com

A lot of information about the target can be found out by just asking sendmail if an
address is acceptable (vrfy), or what an address expands to (expn). When the finger or
rusers services are turned off, vrfy and expn can still be used to identify user accounts
or targets. Vrfy and expn can also be used to find out if the user is piping mail through
any program that might be exploited (e.g.vacation, mail sorters, etc.). It can be a good
idea to disable the vrfy and expn commands.

2.2.2.3. Programmed Threats

The next step after getting password file on any way is to use it to enter into the
system. The problem attacker encounter then is how to hide his presence during the
action he wants to perform in the system. For that reason programmed form of attacks

Chapter 2 Misuse of Information Systems

2-7

are used, as Trojan horses, logic or time bombs, viruses or worms. In fact all attempts
to penetrate into the system can be done by programs too.

The most serious threats are viruses and worms as they can spread between machines
and programs in system, while other types of "malicious software" can be limited on
one machine only. Programmed types of threats will be discussed in more detail in
next chapter.

Chapter 2 Misuse of Information Systems

2-8

Chapter 3 Programed Threats

3-1

3. PROGRAMMED THREATS
Programmed threats to information security are numerous. Some of the most frequent
attacks will be described in following text.

There are two types of such threats:

- non-reproducing threats that do not have built-in ability to replicate themselves
- self-reproducing threats that do have built-in ability to replicate themselves

Many of attacks, which will be described, are technically complex and will not all be
explained in detail.

3.1. Non-reproducing Threats

Most common types of non-reproducing threats will be described bellow

One classic software attack is the trap door or back door. A trap door is a quick way
into a program; it allows program developers to bypass all of the security built into
the program, now or in the future. Typical trap doors use such system features as
debugging tools, program exits that transfer control to privileged areas of memory,
undocumented application calls and parameters, and many others.

Session hijacking is a relatively new type of attack in the communications. Some
systems do not disconnect immediately when a session is terminated. Instead they
allow a user to re-access the interrupted program for a short period. An attacker with a
good knowledge of communications operations can take advantage of this fact to
reconnect to the terminated session.

Tunneling use one data transfer method to carry data for another method. Tunneling
is an often legitimate way to transfer data over incompatible networks, but is
illegitimate when it is used to carry unauthorized data in legitimate data packets.

Timing attacks are another way to get unauthorized access to software or data. These
include the abuse of race conditions and asynchronous attacks. In race conditions,
there is a race between two processes operating on a system; the outcome depends on
who wins the race. On certain type of Unix systems the attackers could exploit a
problem with files known as setuid shell files to gain superuser privileges.

Asynchronous attacks are another way of taking advantage of dynamic system
activity to get access. Computing systems are often called upon to do many things in
the same time. In these cases, the operating system simply places user requests into a
queue, then satisfy them according to predetermined set of criteria. Asynchronous
means that computer does not simply satisfy requests in the order in which they were
performed, but according to some other scheme. A skilled programmer can figure out
how to penetrate the queue and modify the data that is waiting to be processed or
printed.

Chapter 3 Programed Threats

3-2

Buffer overflow attacks happen when attacker tries to put more data into a buffer than
it can handle. A buffer is an abstraction, an area of memory in which some type of
text or data will be stored. Programmers make use of such a buffer to provide pre-
assigned space for a particular block or blocks of data. When buffer overflow occurs,
overload characters are put somewhere in memory, at another address (an address the
programmer did not intend for those characters to go). Attackers, by manipulating
where those extra characters end up, can cause arbitrary commands to be executed by
the operating system. Most often, this technique is used by local users to gain access
to a root shell. Unfortunately, many common utilities have been found to be
susceptible to buffer overflow attacks.

Trojan horses are attacks on the integrity of information that is stored in the system.
A Trojan horse is the method for inserting instructions in a program so that program
performs an unauthorized function while apparently performing a useful one. The
typical situation is: Trojan horse is hidden in an application program that is user eager
to try, e.g. new game or a program that promises to increase efficiency. Inside the
horse are the instructions that will cause the entire system to crash when the program
is run.

Logic bomb is a harmful program that is triggered by a certain event or situation.
Logic bomb’s code may be a part of a regular program or set of programs, and not
activated when first run. The trigger may be any event that can be detected by
software, such as date, username, presence or the absence of a certain file, etc.

Programmed denial of service attacks can crash or slow down systems when they are
run. The programs of this type may even cause the crashing of the individual systems
on the network remotely. The examples of such attacks are before mentioned
distributed denial of service attacks.

 3.2. Self – reproducing Threats

The most known representative of self – reproducing threats is computer virus. In
general, computer virus is a sequence of symbols. A sequence of symbols v is an
element of viral set V if, when interpreted, it causes some other element v’ of that
viral set to appear somewhere else in the system at the later point of time [2].
(Fig. 3.2.1.)

Figure 3.2.1. Formal Definition of Computer Virus

v' vv'v

V V

Chapter 3 Programed Threats

3-3

The above definition of computer virus is not used very often. The most common
definition is [2] : a virus is a program that can infect other programs by modifying
them to include, a possibly evolved, version of itself. The infection process is the
most distinguishable property of the computer virus (Fig 3.2.2.)

Computer viruses may do some damage in computing system where they are located,
i.e. they may contain Trojan horse or a logic bomb, but they do not necessarily have
to. However, any virus has to have ability to spread itself through the system,
otherwise it is not considered as a virus.

Figure 2.2.2. Infection by computer virus

3.2.2. The Types of Viruses

The viruses are able to replicate, that is to create (possibly modified) copies of
themselves, but the virus has to attach itself to a host (carrier of virus), in the sense
that execution of the host implies execution of the virus.

The viruses can be classified by their hosts. There are four main types of viruses and
several variations [30].

Boot sector viruses alter the program that is in the first sector (boot sector) of every
DOS-formatted disk. Generally, a boot sector infector executes its own code, which
usually infects the boot sector or partition sector of the hard disk, then continues the
PC start – up process.

File viruses attach themselves to a file, usually an executable application. A file virus
infects other files when the program to which is attached is run.

VIRUS PROGRAM 1

PROGRAM 2INFECTED
PROGRAM 1

INFECTED
PROGRAM 2

Chapter 3 Programed Threats

3-4

Multipartite viruses infect boot sectors and files. Typically, when an infected file is
executed, it infects the hard disk boot sector or partition sector, and thus infects
subsequent floppy disks used or formatted on the target system.

Macro viruses infect data files, which contain embedded executable code such as
macros. They typically infect global settings files such as Word templates so that
subsequently edited documents are contaminated with the infective macros.

There are several variations of viruses, regarding how they can hide their presence:

Stealth viruses have ability to conceal their presence from anti-virus programs.

Polymorphic viruses are viruses that cannot be detected by searching for a simple,
single sequence of bytes in a possibly infected file, since they change with every
replication.

Companion viruses are viruses that spread via a file, which runs instead of file the
user intended to run, and then runs the original file.

There is also a special species of the virus, which is called worm. The worm spreads
through the networked systems.

3.2.3. Examples of Viruses and Worms

Most prevailing viruses in today's computer world are macro viruses and so called e-
mail worms. Some of them (e.g. Melissa) may combine both characteristics. The best
way to learn behavior of such "creatures" is to describe some of them in more detail.

3.2.3.1. Concept

WM/Concept was one of first macro viruses reported "in the wild" and used to be
extremely widespread during 1995-1997. Nowadays it is almost (but not completely)
extinct.

WordMacro/Concept - also known as Word Prank Macro or WW6Macro - is a macro
virus, which has been written with the Microsoft Word v6.x macro language. It has
been reported in several countries, and seems to had no trouble propagating in the
wild.

WordMacro/Concept consists of several Word macros. Since Word macros are
carried with Word documents themselves, the virus is able to spread through
document files. The situation is made worse by the fact that WordMacro/Concept is
also able to function with Microsoft Word for Windows 6.x and 7.x, Word for
Macintosh 6.x, as well as in Windows 95 and Windows NT environments. It is, truly,
the first functional multi-environment virus, although it can be argued that the
effective operating system of this virus is Microsoft Word, not Windows or MacOS.

Chapter 3 Programed Threats

3-5

The virus gets executed every time an infected document is opened. It tries to infect
Word's global document template, NORMAL.DOT (which is also capable of holding
macros). If it finds either the macro "PayLoad" or "FileSaveAs" already on the
template, it assumes that the template is already infected and ceases its functioning.
If the virus does not find "PayLoad" or "FileSaveAs" in NORMAL.DOT, it starts to
copy the viral macros to the template and displays a small dialog box on the screen.
The box contains the number "1" and an "OK" button, and its title bar identifies it as a
Word dialog box. This effect seems to have been meant to act as a generation counter,
but it does not work as intended. This dialog is only shown during the initial infection
of NORMAL.DOT.

After the virus has managed to infect the global template, it infects all documents that
are created with the "Save As" command. It is then able to spread to other systems on
these documents - when a user opens an infected document on a clean system, the
virus will infect the global document template.

The virus consists of the following macros:
AAAZAO
AAAZFS
AutoOpen
FileSaveAs
PayLoad

"AutoOpen" and "FileSaveAs" are legitimate macro names, and some users may
already have attached these macros to their documents and templates. In this context,
"PayLoad" sounds very ominous. It contains the text:

Sub MAIN
REM That's enough to prove my point

End Sub

However, the "PayLoad" macro is not executed at any time.

3.2.3.2. Melissa

A virulent and widespread computer virus was found on Friday, March 26, 1999. This
virus has spread all over the globe within just hours of the initial discovery,
apparently spreading faster than any other virus before.

The virus, known as W97M/Melissa, spreads by e-mailing itself automatically from
one user to another. When the virus activates it modifies user's documents by
inserting comments from the TV series "The Simpsons". Even worse, it can send out
confidential information from the computer without users' notice.

The virus was discovered on Friday, late evening in Europe, early morning in the US.
For this reason, the virus spread in the USA during Friday. Many multinational
companies reported widespread infections, including Microsoft and Intel. Microsoft
closed down their whole e-mail system to prevent any further spreading of the virus.
W97M/Melissa was initially distributed in an internet discussion group called alt.sex.
The virus was sent in a file called LIST.DOC, which contained passwords for X-rated

Chapter 3 Programed Threats

3-6

websites. When users downloaded the file and opened it in Microsoft Word, a macro
inside the document executed and e-mailed the LIST.DOC file to 50 people listed in
the user's e-mail alias file ("address book").

The e-mail looked like this:
From: (name of infected user)
Subject: Important Message From (name of infected user)
To: (50 names from alias list)
Here is that document you asked for ... don't show anyone
else ;-)
Attachment: LIST.DOC

Melissa can arrive in any document, not necessarily just in this LIST.DOC where it
was spread initially. Most of the recipients are likely to open a document attachment
like this, as it usually comes from someone they know.

After sending itself out, the virus continues to infect other Word documents.
Eventually, these files can end up being mailed to other users as well. This can be
potentially disastrous, as a user might inadvertently send out confidential data to
outsiders.

The virus activates if it is executed when the minutes of the hour match the day of the
month; for example, 18:27 on the 27th day of a month. At this time the virus will
insert the following phrase into the current open document in Word: "Twenty-two
points, plus triple-word-score, plus fifty points for using all my letters. Game's over.
I'm outta here". This text, as well as the alias name of the author of the virus,
"Kwyjibo", are all references to the popular cartoon TV series called "The Simpsons".

W97M/Melissa works with Microsoft Word 97, Microsoft Word 2000 and Microsoft
Outlook 97 or 98 e-mail client. One does not need to have Microsoft Outlook to
receive the virus in e-mail, but it will not spread itself further without it. Melissa will
not work under Word 95. Melissa will not spread further under Outlook Express.

Melissa can infect Windows 95, 98, NT and Macintosh users. If the infected machine
does not have Outlook or internet access at all, the virus will continue to spread
locally within the user's own documents.

3.2.3.3. Love Letter Worm

The "Love Letter" worm is a malicious VBScript program, which spreads in a variety
of ways. As of 5:00 pm EDT(GMT-4) May 8, 2000, the CERT Coordination Center
has received reports from more than 650 individual sites indicating more than 500,000
individual systems are affected. In addition, there were several reports of sites
suffering considerable network degradation as a result of mail, file, and web traffic
generated by the "Love Letter" worm.

One can be infected with the "Love Letter" worm in a variety of ways, including
electronic mail, Windows file sharing, IRC, USENET news, and possibly via
webpages.

Chapter 3 Programed Threats

3-7

3.2.3.3.1. Electronic Mail
When the worm executes, it attempts to send copies of itself using Microsoft Outlook
to all the entries in all the address books. The mail it sends has the following
characteristics:
- An attachment named "LOVE-LETTER-FOR-YOU.TXT.VBS"
- A subject of "ILOVEYOU"
- The body of the message reads "kindly check the attached LOVELETTER coming

from me."
People who receive copies of the worm via electronic mail will most likely recognize
the sender.

3.2.3.3.2. Internet Relay Chat
When the worm executes, it will attempt to create a file named script.ini in any
directory that contains certain files associated with the popular IRC client mIRC. The
script file will attempt to send a copy of the worm via DCC to other people in any
IRC channel joined by the victim.

3.2.3.3.3. Executing Files on Shared File Systems
When the worm executes, it will search for certain types of files and replace them
with a copy of the worm. Executing (double clicking) files modified by other infected
users will result in executing the worm. Files modified by the worm may also be
started automatically, for example from a startup script.

3.2.3.3.4. Reading USENET News
There have been reports of the worm appearing in USENET newsgroups.

3.2.3.3.5. Impact
When the worm is executed, it takes the following steps:
1. Replaces Files with Copies of the Worm
When the worm executes, it will search for certain types of files and make changes to
those files depending on the type of file. For files on fixed or network drives, it will
take the following steps:

- For files whose extension is vbs or vbe it will replace those files with a copy of
 itself.
- For files whose extensions are js, jse, css, wsh, sct, or hta, it will replace those
 files with a copy of itself and change the extension to vbs. For example, a file
 named x.css will be replaced with a file named x.vbs containing a copy of the
 worm.
- For files whose extension is jpg or jpeg, it will replace those files with a copy of
 the worm and add a vbs extension. For example, a file named x.jpg will be
 replaced by a file called x.jpg.vbs containing a copy of the worm.
- For files whose extension is mp3 or mp2, it will create a copy of itself in a file
 named with a vbs extension in the same manner as for a jpg file. The original
 file is preserved, but its attributes are changed to hidden.

Since the modified files are overwritten by the worm code rather than being deleted,
file recovery is difficult and may be impossible.

Chapter 3 Programed Threats

3-8

Users executing files that have been modified in this step will cause the worm to
begin executing again. If these files are on a file system shared over a local area
network, new users may be affected.
2. Creates an mIRC Script
While the worm is examining files as described in the previous section, it may take
additional steps to create a mIRC script file. If the file name being examined is
mirc32.exe, mlink32.exe, mirc.ini, script.ini, or mirc.hlp, the worm will create a file
named script.ini in the same folder. The script.ini file will contain:

[script]

n0=on 1:JOIN:#:{
n1= /if ($nick == $me) { halt }
n2= /.dcc send $nick DIRSYSTEM\LOVE-LETTER-FOR-YOU.HTM
n3=}

where DIRSYSTEM varies based on the platform where the worm is executed. If the
file script.ini already exists, no changes occur.

This code defines an mIRC script so that when a new user joins an IRC channel the
infected user has previously joined, a copy of the worm will be sent to the new user
via DCC. The script.ini file is created only once per folder processed by the worm.
3. Modifies the Internet Explorer Start Page
If the file <DIRSYSTEM>\WinFAT32.exe does not exist, the worm sets the Internet
Explorer Start page to one of four randomly selected URLs. These URLs all refer to a
file named WIN-BUGSFIX.exe, which presumably contains malicious code. The
worm checks for this file in the Internet Explorer downloads directory, and if found,
the file is added to the list of programs to run at reboot. The Internet Explorer Start
page is then reset to "about:blank".
4. Sends Copies of Itself via Email
The worm attempts to use Microsoft Outlook to send copies of itself to all entries in
all address books.
5.Modifies Other Registry Keys
In addition to other changes, the worm updates the following registry keys:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\MSKernel32
HKLM\Software\Microsoft\Windows\CurrentVersion\RunServices\Win32DLL
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\WIN-BUGSFIX
HKCU\Software\Microsoft\Windows Scripting Host\Settings\Timeout
HKCU\Software\Microsoft\Internet Explorer\Main\Start Page
HKCU\Software\Microsoft\WAB*

When the worm is sending email, it updates the last entry each time it sends a
message. If a large number of messages are sent, the size of the registry may grow
significantly, possibly introducing additional problems.

Chapter 4 Protection of Information Systems

4-1

4. PROTECTION OF INFORMATION
 SYSTEMS
Several types of threats to information systems were considered in previous chapters.
In this chapter the methods of protection will be described.

Today’s protection of information systems can be roughly divided in two important
areas: prevention and active protection. Prevention includes all measures to be taken
before a security incident happens. Active protection includes tools and methods for
real – time protection.

4.1. Prevention

Prevention is the most important part of overall information protection framework. It
includes some non – technical methods such as establishing security policy, security
standards, defining security procedures, education and training, regular checking of
employees and equipment, raising the level of knowledge of existing laws concerning
computer crime. The most highly publicized computer security breaches are hacker
attacks, but security experts say the biggest dangers, both accidental and deliberate, to
information technology resources are within the organization. Threats range from
employees choosing easily guessable passwords, not backing up data, or leaving
connected computers unattended, etc. That is why raising the level of awareness of
security risks within the organization is extremely important. Therefore is the
understanding of security risks the first step in developing a security policy and
securing organization’s network.

The key to providing consistent, cost effective, efficient, and appropriate levels of
security in an organization is to ensure that the direction of security has been carefully
considered, documented and communicated. The security policy and its supporting
standards provide this direction, in terms of the security requirements of the
organization. Without it security would be implemented on an ad hoc basis leading to
costly inconsistencies and, very likely, flaws in the protection offered. The prevention
methods are described in more detail in Appendix B.

4.2. Active Protection

Although prevention is the most important aspect of security, attention should also be
paid to other means of protection. So, for a safer and more secure information system
we use all means of protection. After prevention, the next step is active protection.
Active protection means to apply in real conditions all the measures defined by
security policy, standards and procedures. In general, active protection consists of
network and Internet security, system and applications protection, incident response
and implementing laws concerning computer crime.

Chapter 4 Protection of Information Systems

4-2

4.2.1. Network and Internet Security

 Network and Internet security includes protection of communication devices such as
modems, controlling access to servers, network monitoring, network scanning,
securing network services, securing network configuration, filtering network traffic
(routers, firewalls).

4.2.1.1. Secure Modems

Securing modems is one of the important steps in securing information inside an
organization and elsewhere. Modems raise a number of security concerns because
they are a link between the computer and the outside world. They are a popular and
widely used tool for breaking into networks because they are often unguarded. The
first step to protect modems is their physical protection, i.e. placing them in a
physically secure location. They should be protected from rewiring or altering.
Further, their telephone numbers should be protected and monitored. The modem
access should be authorized allowing that way easier tracing of an intruder.

4.2.1.2. Scanners

As it was already mentioned earlier, networks are prone to security threats because of
their ability to let users exchange and modify information. That is why it is important
that networks be regularly checked and monitored for any signs of unusual activity.
There are numerous tools, which allow network scanning for known vulnerabilities.

Scanner is a program that automatically detects security weaknesses in a remote or
local host. Most of the scanners are TCP ports scanners, which are programs that
attack TCP/IP ports and services, such as telnet or ftp, and record the response from
the target. Although they are commonly written for execution on Unix workstations,
scanners are now written for use on almost any operating system. The primary
attributes of a scanner are: a) the capability to find a machine or network, b) the
capability, once having found a machine, to find out what services are being run on
the host, c) the capability to test those services for known security vulnerabilities.
There are many scanners available on the Internet. Some of the most popular are: ISS
(Internet Security Scanner), Strobe, SATAN (Security Administrator’s Tool for
Analyzing Networks), Jakal, etc.

4.2.1.3. Firewalls

In terms of security, the best way to protect information in an organization is physical
isolation. Some companies and organizations still feel that it is best not to connect to
outside networks since the risk of security breaches is too high. However, today it is
hard to resist the opportunities the Internet provides. E-mail, news, WWW and other
services are a useful tool in any business. That is why some organizations use
firewalls to protect their security, thus retaining some amount of isolation but still be
connected to the outside information world.

Chapter 4 Protection of Information Systems

4-3

One of the main ideas behind a firewall is that the network will remain theoretically
invisible (or at least unreachable) to anyone not authorized to connect. This process
works through the exclusionary schemes that one can apply using a firewall.

There are different kinds of firewalls, and each type has its advantages and
disadvantages. The most common type is referred to as a network – level firewall.
Network – level firewalls are usually router based. The rules of who and what can
access the network is applied at the router level. This scheme is applied through a
technique called packet filtering, which is the process of examining the packets that
come to the router from the outside world. The source address of each incoming
connection (that is, the address from which the packets originated) is examined. After
each IP source address has been identified, whatever rules were instituted will be
enforced. For example, the router can reject any packets forwarded from evil.com.
These packets never reach the internal server or the network beneath it. Router –
based firewalls are fast because they only perform cursory checks on the source
address and therefore there is no real demand on the router. There are many free and
commercial packet-filtering tools on the Internet such as TCP_Wrappers, NetGate,
Internet Packet Filter, etc.

There are also other types of firewalls. A common type is application – proxy
firewall (sometimes referred to as application gateway). Application gateways are
software based. When the remote user contacts a network running an application
gateway, the gateway blocks the remote connection. Instead of passing the connection
along, the gateway examines various fields in the request. If these meet a set of
predefined rules, the gateway creates the bridge between the remote host and the
internal host. For example, in a typical application gateway scheme, IP packets are not
forwarded to the internal network. Instead, a type of translation occurs, with the
gateway as the conduit and interpreter. This gateway scheme has a cost in terms of
speed. Because each connection and all traffic are accepted, negotiated, translated and
reforwarded, this implementation can be slower than router – based packet filtering. A
typical example of an application – firewall package is the TIS (Trusted Information
Systems) FWTK (Firewall Tool Kit).

Although firewalls are a very useful tool in protecting the security of information
since they control the amount and kinds of traffic between the external and internal
network of the organization they should always be used in addition to other measures
to maintain a high level of security. Packet filters, when used in conjunction with
powerful auditing tools, can greatly assist in protecting the network and identifying
intruders.

4.2.1.4. Sniffers

A sniffer is any device, whether software or hardware, that collects information
traveling along a network. That network could be running any protocol: Ethernet,
TCP/IP, IPX, or others (or any combination of these). Attackers to information system
more often use sniffers to collect passwords, but if they are used properly they may be
used for the network traffic control.

Chapter 4 Protection of Information Systems

4-4

The purpose of the sniffer is to place the network interface, e.g. Ethernet adapter, into
promiscuous mode and by doing so, to capture all network traffic. Promiscuous mode
refers to that mode where all workstations on a network listen to all traffic, not simply
their own. In other words, non-promiscuous mode is where a workstation only listens
to traffic route in its own address. In promiscuous mode, the workstation listens to all
traffic, no matter what address this traffic was intended for.

Sniffers capture network traffic. This network traffic, irrespective of what protocol is
running, is composed of packets. These are exchanged between machines at a very
low level of the operating system network interface. However, they also may carry
vital data, sometimes very sensitive data. Sniffers are designed to capture and archive
that data for later inspection.

4.2.2. Individual System Protection

 System protection includes user authentication, regular checking of security holes in
the system, monitoring activities in the system, monitoring accounts and recovery
procedures.

4.2.2.1. Auditing and Logging Tools

Before any other security measures become meaningful, there must be a way to
reliably identify authorized computer system users and lock others out. Once
identified, authorized users should have limited access to the system's resources,
consistent with their work responsibilities. The most commonly used authentication
technique is a password. But many passwords can be easily guessed, which is why
more sophisticated authentication techniques are needed. Every administrator should
know weak spots in his system and monitor them closely.

Auditing and logging tools are suitable for system monitoring, access control,
checking security holes in the system. There are many various types of such tools,
most of them available on Internet, such as COPS, Argus, NetLog, etc.

4.2.2.2. Intruder detection

Intruder detection system observes user behavior on a monitored computer system
and learns what is normal for individual users, groups of users and the overall system
behavior. Observed behavior is marked as a potential intrusion if it deviates
significantly from the expected behavior.

An intruder is likely to exhibit a behavior pattern that is significantly different from
that of a legitimate user and can be detected through observation of this statistically
unusual behavior. This idea is the basis for enhancing system security by monitoring
system activity and detecting atypical behavior. Such a monitoring system is capable
of detecting intrusions that could not be detected by any other means, e.g. intrusions
that exploit unknown vulnerabilities. In addition, there can be included detection of
intrusions that exploit known vulnerabilities through the use of explicit expert-system

Chapter 4 Protection of Information Systems

4-5

rules. An example of such a tool is IDES (Intrusion-Detection Expert System), being
developed at SRI International’s Computer Science Laboratory. It is a comprehensive
system that uses statistical algorithms for anomaly detection, as well as an expert
system that encodes known intrusion scenarios.

4.2.3. Applications protection

Applications protection means use of legal software, anti-virus protection, and regular
installing of patches and fixes to remove existing security holes.

4.2.3.1. Anti-virus protection

There are many tools available for protection against computer viruses. They can
roughly be divided in three types: activity monitors, integrity checking or change-
detection tools and scanners.

4.2.3.1.1. Activity monitors

An activity monitor watches for suspicious activities in computer system. It may, for
example, check for any calls to format a disk or attempts to alter or delete a program
file while a program other than the operating system is in control. It may further check
for any program that performs “direct” activities with hardware, without using the
standard system calls.

The drawback of activity monitors is great amount of false alarms. It is very hard to
tell the difference between a word processor updating a file and a virus infecting a
file. An activity monitor may continually ask for confirmation of valid activities, so
the user can decide to switch it off. Restricting the operations that a computer can
perform, some of computer viruses can be eliminated. Unfortunately, that way the
most of the usefulness of the computer is eliminated too.

There are several activity monitors available, such as Flu Shot or NVC.SYS

4.2.3.1.2. Integrity checkers

Integrity checkers or change detectors are programs that examine system and/or
program files and configuration, store the information, and compare it against the
actual configuration at a later time. Most of these programs perform a checksum or
cyclic redundancy checks (CRC) that will detect changes to a file even if the length is
unchanged. Some programs will use sophisticated encryption techniques to generate a
signature, which may in some extent prevent the virus attack.

A sufficiently advanced integrity checker, which takes all factors including system
areas of the disk and the computer memory into account, has the best chance of
detecting all current and future viral strains. There are numerous implementations of

Chapter 4 Protection of Information Systems

4-6

integrity checking software. Some versions run only at boot time; others check each
program as it is run. They may attach a small piece of code to the programs they are
protecting, although this may cause programs that have their own change-detection
features, or nonstandard internal structures, to fail. Some programs only protect
system software; others only protect program files. Integrity checkers may keep the
signature file in the root directory or in the “local” directories.

However, change detection also has the highest possibility of false alarms, since it
will not know if change is viral or valid. The addition of intelligent analysis of the
changes detected may assist with this failing.

The most known example of an integrity checker is Integrity Master.

4.2.3.1.3. Scanners

Scanners are programs that looks for known viruses by checking for recognizable
patterns (“scan strings”, “search strings”, “signatures”). They examine files, boot
sectors and memory for evidence of viral infection. These programs generally look for
sections of program code that are known to be in specific viral programs, but not in
most other programs.

There are several variations of such programs. TSR scanner is a memory resident
program that checks for viruses while other programs are running. It may have some
of the characteristics of an activity monitor. VxD scanner is a scanner that works
under MS Windows platform, which checks for viruses continuously. Heuristic
scanner is a scanner that inspects executable files for code using operations that
might denote an unknown virus.

The scanners can only find infections after they occur, but that does not mean that
scanners cannot play a preventive role in protecting the system. If scanner is used
consistently to check each disk or file that enters a system, and is kept up to date, the
chance of a viral infection being allowed to enter is greatly reduced.

The most known examples of scanners are F-Prot and AVP.

4.3. Automated Adaptive Protection Systems

The protective tools can be roughly divided into two types: non - adaptive ones and
adaptive automated protective tools. Non – adaptive tools were described earlier and
are still prevailing today while fully adaptive automated protection tool exists mostly
as a concept. Nevertheless, it is worthwhile to present this concept which will
certainly get more attention in the near future.

Chapter 4 Protection of Information Systems

4-7

Automatization of the protection systems and using adaptiveness allows easy handling
(user friendliness) and can reduce error level. Adaptiveness is the ability of a system
to adapt to changes that could significantly influence the existence of the system.
Adaptive systems receive information about their environment and about the desired
behavior of the system. On the basis of that information the system can change the
performance of system till (ideally) the real behavior of system corresponds to the
desired one.

4.3.1. Concept of Adaptive System

Adaptive system works in environment which manifestations z are represented by the
set Z. The system must receive some information about the desired behavior from set
M. The system’s real behavior is determined by some decision rule (algorithm), i.e.
 y = d(z,q) where q is variable part of system which can be changed during adaptation.
The aim of an adaptive system is to set adequate behavior y, i.e. to adjoin
corresponding y to each pair [z,m] to obtain the minimum loss by criterion Q(z,m,q)
which evaluate the difference between the desired (m) and the real behavior (y) and
represents the price which has to be paid for the adaptation.

Q(z,m,q) y=d(z,q)

z

m

q

y

Figure 4.3.1. Adaptive system

Adaptive system is system with two inputs and one output which is:

 1.) described by:

AS = [Z, M, Y, D, Q]
 where:

 Z is a set of environment manifestations; z is element of Z
 M is a set of information about desired behavior; m is element of M
 Y is a set of outputs; y is element of Y
 D is a set of decision rules, y = d(z,q)
 Q is a criterion for minimum loss Q(z,m,q)

 2.) and for each pair [z,m,] is searching for parameter q' for which the following
 holds:

Q(z,m,q') = min Q(z,m,q)
 q

Chapter 4 Protection of Information Systems

4-8

In an adaptive systems the new parameter of adaptation q is set every time the
criterion Q does not reach a minimum. Adaptation process can consist of few
iterations, taken regardless on previous value of q. In that case adaptive systems does
not “memorize” information about previous behavior.

If an adaptive system has the ability to memorize previous behavior and to set the
parameter q on the basis of such “experience” it means that adaptive system has
ability to “learn”.

The approximate model of an adaptive protection system is shown in Fig.4.3.2.

SR

O.E.M

A

uc

ym

q
v

yo

y
_

+ u

 Figure 4.3.2. Adaptive Protection System

Where:

 S is the information system, which is to be protected
 O.E. is observing element
 M is the model of desired behavior (security model)
 A is adaptive mechanism
 R is regulator
 uc is the control signal
 u is the input signal to computer system
 v is the signal of disturbance to system, e.g. computer virus or intrusion attempt
 y is the output signal from computer system, which represents the real state of
 computer system
 yo is the output signal from observing element
 ym is the information from the model of desired behavior
 q is the output signal from the adaptive mechanism, it is variable parameter of the
 regulator

The term “signal” refers here to any interpretable sequence of symbols (data,
instruction, etc.).

Chapter 4 Protection of Information Systems

4-9

4.3.2. Model of Desired Behavior (Security Model)

The model of desired behavior gives information about standard allowed features in
the information system. It may be based on one of existing security models. Those
models can be combined or an arbitrary new security model can be used. The records
in security model’s database may have the form:

[SYSTEM FUNCTION; SUBJECT; OBJECT; PARAMETER]

Subjects are users, processes, etc. Objects are files, programs, etc. The set of possible
system functions includes: get access, give access, create object, delete object, change
object security level, change subject security level, etc. Parameters indicate the kind
of access allowed.

4.3.3. Observing Elements

Observing elements check performance and vital parts of the computer system. The
results may be stored in audit database which records have the same form as those in
security model’s database. Parameters in audit database records indicate the kind of
access requested.

4.3.4. Adaptive Mechanism

The main task of the adaptive mechanism is to alter the performance of the regulator
when an “abnormal” state of the computer system is detected. More detailed scheme
of adaptive mechanism is shown on Figure 4.3.3.

A.E.

R.E.

K.D.

Q.E.

ym

q

u

yo

A

h

g
ef

Figure 4.3.3. Adaptive Mechanism

Chapter 4 Protection of Information Systems

4-10

Where:
 R.E. is recognition element
 K.D. is knowledge database
 Q.E. is criterion element
 A.E. is adaptive element
 e is output signal from recognition element, i.e. signal of difference
 f is signal from criterion element to recognition element
 g is information from/to knowledge database
 h is output signal from criterion element
 ym, yo, u, q are signals as noted earlier in the text

Recognition element compares the signals from security model and observing
element. Additionally it can compare the signal yo with information stored in
knowledge database(s). Knowledge database contains records about known irregular
states. There can be more than one such database. On the basis of performed
comparisons, recognition element gives the signal of difference e to the criterion
element. Criterion element checks if the received signal is in the limits of the certain
criterion of adaptation. It passes the signal h to adaptive element which sets
corresponding parameter q for the regulator.

4.3.5. Regulator

The regulator keeps information system in standard (“regular”) state of performance
according to information given from the adaptive mechanism. It activates observing
elements. Furthermore, regulator performs the routines for reconstruction of “normal”
state of the computer system.

4.3.6. Principal work

The performance of information system S can be approximated by linear
mathematical process:

A(p)y(k) = B(p)u(k) + C(p)v(k) (4.3.6.1)

Where:
 k is index of time
 y(k) is output signal
 u(k) is input signal
 v(k) is disturbance signal (e.g. computer virus or an intrusion)
 p is operator of precedence/delay
 A(p), B(p), C(p) are polynoms in p of na, nb, nc order

The equation (4.3.6.1) may be rewritten as:

 y(k) = B*(p)u(k) + C*(p)v(k) (4.3.6.2)

Chapter 4 Protection of Information Systems

4-11

where:
B*(p) = B(p)/A(p)
C*(p) = C(p)/A(p)

The observing model O.E. measures y(k) and gives its output yo(k). In ideal case
(measurement errors neglected) holds:

yo(k) = y(k) = B*(p)u(k) + C*(p)v(k) (4.3.6.3)

The model of desired behavior M gives an output signal ym when receiving control
signal uc (M maps uc to ym):

M : uc →→→→ ym (4.3.6.4)

Signal ym has a form:

ym (k) = M(p)u(k) (4.3.6.5)

where M(p) is a polynom in p of nm order.

Recognition element R.E. compares first yo(k) and ym(k) and gives the signal of
difference e(k):

e(k) = ym(k) - yo(k) = M(p)u(k) - B*(p)u(k) - C*(p)v(k) =

 = [M(p) - B*(p)]u(k) - C*(p)v(k) (4.3.6.6)

Signal e(k) is sent to criterion element Q.E. that checks if received signal is in the
limits of certain criterion of adaptation. The condition for criterion function Q[e(k)] to
have an extreme is:

∇∇∇∇ Q[e(k)] = grad Q[e(k)] = 0 (4.3.6.7)

It is required that criterion function Q[e(k)] has only one extreme, i.e. minimum.

If minimum is not found in the first try, criterion element Q.E. sends signal f to
recognition element R.E that performs then further comparison. It compares yo(k)
with g(k), an information from knowledge database K.D. :

g(k) = K(p)w(k) = K1(p)u(k) + K2(p)v(k) (4.3.6.8)

e'(k) = g(k) - yo(k) = K(p)w(k) - B*(p)u(k) - C*(p)v(k) =

 = K1(p)u(k) + K2(p)v(k) - B*(p)u(k) - C*(p)v(k) =

 = [K1(p) - B*(p)]u(k) - [K2(p) - C*(p)]v(k) (4.3.6.9)

This new signal of difference e’(k) is sent again to criterion element and the minimum
is searched for Q[e’(k)]. It is possible to have more than one knowledge database, so

Chapter 4 Protection of Information Systems

4-12

the above procedure can be repeated several times. When the final result of searching
minimum procedure is obtained, criterion element sends a signal h to adaptive
element, which accordingly sets the parameter q for the regulator R.

From (4.3.6.6) and (4.3.6.7) follows that minimum is obtained in the first try when:

[M(p) - B*(p)] = 0 => M(p) = B*(p) ; C*(p) = 0 (4.3.6.10)

This means that the ideal “normal” state of the computer system is obtained when real
state corresponds to the desired one:

y(k) = ym(k) = M(p)u(k) (4.3.6.11)

Parameter q has to be set in the way that the regulator keeps state (4.3.6.11) under any
circumstances. According to the value of parameter q the regulator performs
corresponding routines to maintain the regular (“normal”) performance of the
computer system.

When an irregular (“abnormal”) state was detected, i.e. the minimum of adaptation
criterion is not found in the first try, from (4.3.6.8) and (4.3.6.9) follows that
minimum is obtained in the next try when:

[K1(p) - B*(p)] = 0 => K1(p) = B*(p)
[K2(p) - C*(p)] = 0 => K2(p) = C*(p) (4.3.6.12)

This means that “patterns” of irregular computer system performance are known and
regulator is instructed by parameter q to perform routines for “reconstruction” of
“normal” state, e.g. removal of computer virus if known virus is detected.

If no minimum of adaptation criterion is found after several comparisons, then
regulator R is instructed to initiate additional measurement until a satisfying state of
the system is obtained. The irregular state, which caused such an action, can be
recorded in knowledge database for the future use. This way the adaptive mechanism
has ability to “learn”.

Chapter 5 Vulnerabilities in Present Protection Systems

5-1

5. VULNERABILITIES IN PRESENT
 PROTECTION SYSTEMS

Various protection tools were mentioned in previous chapter. There are already many
such systems available on the market or are still under research. Nevertheless, there is
no perfect protection tool, which may assure absolute security of information systems.
There are various reasons for that and some of them will be mentioned in this
Chapter.

5.1. Human Factors

The fact, which is often forgotten when talking about protection systems, is that
people make them to be used by other people. The users implementing particular
protection tool do not have to be skilled enough to use it optimally. Furthermore, they
do not have to be skilled enough to understand the output signals from the protection
tools, so they may act in an inappropriate way which may consequently produce more
damage than malicious act (an intrusion or infection by computer virus) itself. Such
problems are called controllability problems.

There is another group of problems, which disturbs more people who produce or
develop protection tools. It is the problem of definitions. It is hard to discern “normal”
from “abnormal” behavior in the information systems and therefore to produce exact
models or patterns of “abnormal” behavior which could be automatically included in
protection tools.

5.1.1. Controllability Problems

When user chooses a protection tool for his or her information system, it is useful to
see how much is system controllable regarding possible malicious activity in the
system (an intrusion, infection by computer virus, etc.).

5.1.1.1. Open-loop Control System

In general the following situation is possible:

S
u y

 Figure 5.1.1. Open-loop Control System

Chapter 5 Vulnerabilities in Present Protection Systems

5-2

u is input variable, in this case any process, program or executable routine, S is
information system, and y is output variable, which could have two possible
outcomes:
 a) desired, i.e. process or program is unchanged and performs its task,
 b) undesired, i.e. process or program is changed without user’s authorization and it
 may or may not be able to perform its task.

5.1.1.2. Closed-loop Control System

When a protection tool is entered into system a form of closed-loop control system is
obtained:

S

R

u

x

y

e w

+

_

+

_v

Figure 5.1.2. Closed-loop Control System

where u and y are as before, S is information system, R is regulator, which in this
case contains both a protection tool and a user, w is regulating variable, x is an output
variable from the regulator and v is error or noise.

5.1.1.3. An Example

Suppose that the chosen protection tool is a non-TSR (resident in memory) anti-virus
scanner. The user notices that something has happened to an executable program in
the system. The user suspects virus activity and decides to reboot the system and run a
scanner from a write protected diskette (w). When the anti-viral program is run (R)
the output x is obtained, i.e. a message from the scanner. Error (v) added to this signal
can be a false positive (e.g. the scanner recognized as a virus something that is not a
virus) or false negative (e.g. the scanner missed a virus). If no error occurs and virus
is detected or virus is not detected, the user will make correct changes to the system
(e.g. remove the infected program or correct bug in the system that made the user
think that a virus was present). If the error is greater than the signal from the scanner
the user will make an incorrect change to the system (e.g. remove an uninfected
program marked as infected in the case of a false positive or leave an infected
program in the system in the case of false negative). Similar reasoning applies to other
types of anti–viral tools. Other protection tools may also be prone to false negative or
false positive alarms. If the user has not enough experience to discern false alarm
from the real one, errors are possible to happen.

Chapter 5 Vulnerabilities in Present Protection Systems

5-3

5.1.1.4 Control Problems

It is important to stress the significant role of the user in the regulation process and the
noticeable importance of error, which can have significant effect on the desired output
from the system. This means if the error level is high (i.e. a significant amount of
false positives or false negatives exists) and/or the user is not skilled enough to deal
with all the problems caused by a possible virus infection or intrusion, control of
system will be poor with high probability that a virus or intruder will do some damage
to the system.

5.1.2. Problems in Definition of an Intrusion

There is a problem how to discern an intruder’s behavior from the usual user’s
behavior. Sometimes the “patterns” are easily distinguishable, e.g. a lot of telnet
attempts from an unusual host address. Many times, though, it is not such an easy
task. The intruder might know well the habits of his or her “victim”, enough to mimic
the “victim’s” behavior as long as it is necessary.

The presence of an intruder is often revealed after some harmful action is done in the
attacked system. However, it is preferable that the fact of intrusion is discovered in
the same time it is happening.

5.1.3. Problems in Definition of Self - Reproducing Threats

There is a certain ambiguity in definition of computer virus. In general, computer
virus is a sequence of symbols. As mentioned earlier sequence of symbols v is an
element of viral set V if, when interpreted, it causes some other element v’ of that
viral set to appear somewhere else in the system at a later point in time [3].

Viruses may form singleton viral sets (e.g. sequences of instructions in machine code
for the particular machine that makes exact copies of themselves somewhere else in
the machine), but it is not the only possibility. Viruses can evolve through a finite or
potentially infinite number of different instances. Actually, any sequence of symbols
that is interpreted on the machine could contain a virus. This means that the terms
B(p)u(k) and C(p)v(k) in (4.3.6.1) may be highly interdependent, so the more
complex forms for the description of information system S may be required.

5.2. Technical Problems

To improve the control ability of a protection tool it is necessary to reduce the user’s
impact on the regulation process and to decrease error level. Both goals are possible
to obtain by automating the process and using adaptive control described earlier in
Chapter 4. Anyway, even that solution has several technical problems in practical

Chapter 5 Vulnerabilities in Present Protection Systems

5-4

implementations. The most important ones are the problems in choice of security
model and criterion of adaptation, recognition problems and performance problems.

5.2.1. Problems in Choice of Security Model

The main problem in designing the model of desired behavior is the choice of the
most appropriate underlying security model which will preserve the integrity of the
computer system in the best way and, in the same time, not limit too much its standard
performance. There is no perfect and universal security model. It has to be chosen
according to requirements of particular computing system. Preserving integrity and
not limiting standard performance of computing system are somewhat contradictory
requirements. There should always exist a compromise between the two, which can be
just enough to enable irregular behavior, which will not be recognized as such.

5.2.2. Recognition Problems

The main part of recognition element's performance is searching the difference
between the records from respective databases. In general, because of inherent binary
logic of today systems, recognition can be brought down to distinction of "1" from
"0", when it is supposed to be "1" and vice versa. This leaves a high degree of
possibility to err.

There are several methods how to lower this inconvenient bound. One possibility is
the redundancy of recognition elements as shown on Figure 5.2.2. It is so-called
Triple Modular Redundant system or TMR system. The outputs fi of modules Fi are
connected to majority module N which output is f = f1f2 + f1f3 + f2f3 .

Majority module can mask one error on every bit. It has also possibility to evaluate
complete input vectors. The basic principle is voting in which two correct inputs
throw away the incorrect one. It is possible to have more than three recognition
elements, so that in the case when the incorrect one is thrown away new element can
take its place and three-way voting can be continued.

F1

F2

F3

>=2

x

input

f

output

N

f1

f2

f3

Figure 5.2.2. TMR System

Chapter 5 Vulnerabilities in Present Protection Systems

5-5

5.2.3. Problems in Choice of Criterion of Adaptation

The problem in setting the criterion of adaptation is selection of the most appropriate
criterion function Q[e(k)], so the minimum can be reached in acceptably short time.
The minimum has to be set according to requirements of particular computer system,
which means that it may be different for different systems. The strongest requirement
is done by equation (4.3.6.11) when real state of the system has to correspond exactly
to the one requested by security model. In practice it might be inconvenient for some
systems.

5.2.4. Performance Problems

The requirement for acceptable time-space tradeoff puts some constraints on the
design of automated adaptive protection system described earlier. For instance, there
is constraint on dimensions of databases to enable small space occupation and fast
search. This constraint also limits security model implemented and redundancy of
some elements, which might be necessary to maintain accurate protection of system.
Furthermore, there is requirement for accurate and fast communication (e.g. by
exchanging messages) between different parts of protection system, which means the
use of additional control measures. The noted constraints make the automated
adaptive protection system more applicable in distributed systems where some of
mentioned problems are already solved or are easier to solve.

5.3. Inherent vulnerabilities in today’s computing
 systems

 When talking about protection systems in general it is important to stress that there
exist inherent vulnerabilities in today’s computing systems, inherited from the first
days of computing.

5.3.1. Von Neumann’s Architecture

One of the main characteristics of von Neumann’s architecture, which is preserved in
all variations of today’s computing systems is its universality. Universality means
that computing systems are not task oriented, but they are programmed to perform
various tasks depending on the implemented program. While it is very convenient
from user’s point of view, it is inconvenient regarding security requirements.

Some problems are mentioned before; for instance, problems of definitions of
“abnormal” behavior in computing system. It is important to stress again that
anything, which can be programmed, may be programmed to perform malicious
activities in the system and it is very difficult to discern such an attempt from the
“normal” activities before some damage is done.

Chapter 5 Vulnerabilities in Present Protection Systems

5-6

5.3.2. Binary Logic

Binary logic is a basic of today’s computing, i.e. everything is performed through the
sequences of zeros and ones. While it makes computing easy, it is an obstacle
considering security requirements for exact pattern recognition. It was mentioned
earlier that because of inherent binary logic of today systems, recognition can be
brought down to distinction of "1" from "0", when it is supposed to be "1" and vice
versa. Although, there are the methods to circumvent this inconvenient bound (e.g.
redundancy of recognition elements), it still remains the problem, which can be solved
in satisfactory way by changing the binary logic to multivalued logic.

5.3.3. Internetworking

Internetworking is very important part of today’s communication. Internet connects
many networks all around the world in unique network. The communication across
any set of interconnected networks is based mostly on Internet Protocol Suite. There
are a number of serious security flaws inherent in the protocols. There are methods
and protection tools to overcome those security flaws as it was presented in Chapter 4.
Anyway, such methods and tools will necessarily degrade the Internet performance,
because they must on some way control the traffic. This control often means limiting
the free flow of information across the Internet, whether it means to complete
suppress some services or to slow down the transfer of information.

Chapter 6 Summary and Conclusions of Part I

6-1

6. SUMMARY AND CONCLUSIONS OF
 PART I
Part I, Security Problems in today’s Information Systems, introduced the security
problems and methods of protection in today’s information systems, as well as the
vulnerabilities in present protection systems.

6.1. Summary

In Chapter 1, Information Systems, the concepts of information, information system,
computing system, information network and Internet were presented. The information
could be represented by functional relation of probability, under assumption that
information increases when probability of the event decreases and vice versa. General
information system consists of the source of information, encoder of information,
communication (transmission) channel, decoder and receiver of information.

The average quantity of information is the quantity of information, which is needed in
average to determine any individual symbol or message from the set X of all possible
symbols or messages which are transmitted through communication channel. The
quantity I(X) is also called the entropy of discrete stochastic quantity X and is
designated as H(X).Quality of communication can be expressed via quantity of
information flow, which can be transmitted through communication channel with
errors (noise).

The information system with computing system was introduced, which consists of the
computing system, which is the source of information, standard input/output device as
communication channel and a user of computing system as the receiver of
information. The communication flows in two ways, so the computing system may be
also a receiver of information and user may be the source of information. Today’s
computing systems are mostly based on von Neumann’s architecture.

Information network is set of devices and programmable elements, which perform
operations of transmission, commutation and processing. The devices and
programmable elements are mutually connected with fixed or variable connections to
form the system, which performs requested information services. The information
network consists of three basic parts: input/output units, service units and control
units.

The Internet technology, which plays the main role in today's information network
technology was presented. The term Internet is used to denote a collection of packet
switching information networks interconnected by gateways and routers along with
protocols that allow them to function logically as a single, large, virtual network.

From the user's point of view, a TCP/IP Internet appears to be a set of application
programs that use the network to carry out useful communication tasks. Most users
that access the Internet do so merely by running application programs without
understanding the TCP/IP technology, the structure of the underlying internet, or

Chapter 6 Summary and Conclusions of Part I

6-2

even the path their data travels to its destination; they rely on the application programs
to handle such details. The most popular and widespread Internet application services
include: electronic mail, file transfer, remote login, etc. At the network level, an
Internet provides two broad types of service that all application use, i.e.
connectionless packet delivery service and reliable stream transport service.

In Chapter 2, Misuse of Information Systems, some of the attacks to the information
systems were described in more detail. We may consider the attacked information
system as a system with errors. However, it is important to stress that this type of
“errors” is not usual random errors (noise) or “bugs” in the programs which might
appear normally in information systems. These “errors” are deliberately imported into
system. Anyway, for the clarity of explanation, we considered them in the discussion
as a noise in communication. The usual term used for this type of errors is threats to
information systems.

Breaches to physical security are: theft and destruction of information or information
equipment, dumpster diving, natural disasters, etc.

An intruder can use Internet services to break into the system. Most of the break-ins
occur on application level services mostly due to bugs in particular applications,
although more sophisticated attacks using vulnerabilities inherent to TCP/IP protocol
suite are known.

There are a number of serious security flaws inherent in the TCP/IP protocol suite.
Some of these flaws exist because hosts rely on IP source address for authentication;
other exist because network control mechanisms, and in particular routing protocols,
have minimal or non-existent authentication.

Two of most "popular" attacks are so called IP spoofing, i.e. false presenting on
Internet, so to avoid tracing of an intrusion, and denial of service attack on network
level. The one of methods for IP spoofing, TCP sequence number prediction, was
presented in more detail. The very often used denial of service attack is so called SYN
flooding, which was also presented.

During the second half of 1999., several sites reported denial of service attacks
involving distributed intruder tools. In typical distributed attack system, the "intruder"
controls a small number of "masters", which in turn control a large number of
"daemons". These daemons can be used to launch packet flooding or other attacks
against "victims" targeted by the intruder.

The application level services can be used for different kind of attacks from gaining
information about the system to more sophisticated attacks. After collecting
information about system to be attacked, next step is obtaining password file and
using it to enter to the system. The problem attacker encounter then is how to hide his
presence during the action he wants to perform in the system. For that reason
programmed form of attacks are used, as Trojan horses, logic or time bombs, viruses
or worms. In fact all attempts to penetrate into the system can be done by programs
too. The most serious threats are viruses and worms as they can spread between
machines and programs in system, while other types of "malicious software" can be
limited on one machine only.

Chapter 6 Summary and Conclusions of Part I

6-3

In Chapter 3, Programed Threats, some of numerous programmed threats were
presented.

There are two types of such threats:

- non-reproducing threats that do not have built-in ability to replicate themselves
- self-reproducing threats that do have built-in ability to replicate themselves

There are various types of non-reproducing threats ranging from trap or back doors,
timing and buffer overflow attacks, session hijacking and tunneling to Trojan horses,
logical or timing bombs and programmed denial of service attacks.

The most known representative of self – reproducing threats is computer virus. In
general, computer virus is a sequence of symbols. A sequence of symbols v is an
element of viral set V if, when interpreted, it causes some other element v’ of that
viral set to appear somewhere else in the system at the later point of time. The above
definition of computer virus is not used very often. The most common definition is: a
virus is a program that can infect other programs by modifying them to include, a
possibly evolved, version of itself. The infection process is the most distinguishable
property of the computer virus.

Computer viruses may do some damage in computing system where they are located,
i.e. they may contain Trojan horse or a logic bomb, but they do not necessarily have
to. However, any virus has to have ability to spread itself through the system,
otherwise it is not considered as a virus. The classification of viruses by their hosts
was given, as well as examples of some wide spread viruses and worms.

Chapter 4, Protection of Information Systems, described today’s methods of
protection of information systems. Today’s protection of information systems can be
roughly divided in two important areas: prevention and active protection. Prevention
includes all measures to be taken before a security incident happens. Active protection
includes tools and methods for real – time protection. Two types of protective tools
were presented in this Chapter: non - adaptive and adaptive automated protective
tools. Non – adaptive tools are still prevailing today while fully adaptive automated
protection tool exists mostly as a concept.

Prevention is the most important part of overall information protection framework. It
includes some non – technical methods such as establishing security policy, security
standards, defining security procedures, education and training, regular checking of
employees and equipment, raising the level of knowledge of existing laws concerning
computer crime.

After prevention, the next step is active protection. Active protection means to apply
in real conditions all the measures defined by security policy, standards and
procedures. In general, active protection consists of network and Internet security,
system and applications protection, incident response and implementing laws
concerning computer crime.

Network and Internet security includes protection of communication devices such as
modems, controlling access to servers, network monitoring, network scanning,

Chapter 6 Summary and Conclusions of Part I

6-4

securing network services, securing network configuration, filtering network traffic
(routers, firewalls). Some of the network protection tools, such as scanners, firewalls
and sniffers were described in more detail.

System protection includes user authentication, regular checking of security holes in
the system, monitoring activities in the system, monitoring accounts and recovery
procedures. Auditing and logging tools, as well as intruder detection systems were
presented.

Applications protection means use of legal software, anti-virus protection, and regular
installing of patches and fixes to remove existing security holes. There are many tools
available for protection against computer viruses. They can roughly be divided in
three types: activity monitors, integrity checking or change-detection tools and
scanners, which were described in more details.

Automatization of the protection systems and using adaptiveness allows easy handling
(user friendliness) and can reduce error level. Adaptiveness is the ability of a system
to adapt to changes that could significantly influence the existence of the system.
Adaptive systems receive information about their environment and about the desired
behavior of the system. On the basis of that information the system can change the
performance of system till (ideally) the real behavior of system corresponds to the
desired one. The approximate model of an automated adaptive protection system was
presented. It consists from information system, which is to be protected, observing
elements, model of desired behavior (security model), adaptive mechanism, regulator
and corresponding signals. The term “signal” refers here to any interpretable sequence
of symbols (data, instructions, etc.). Every part of the automated adaptive protection
system, as well as its principal work, were presented in more details.

Chapter 5, Vulnerabilities of Present Protection Systems, provided an overview of
the vulnerabilities of today’s protection systems and inherent security flaws in today’s
computing systems. The fact, which is often forgotten when talking about protection
systems, is that people make them to be used by other people. The users implementing
particular protection tool do not have to be skilled enough to use it optimally.
Furthermore, they do not have to be skilled enough to understand the output signals
from the protection tools, so they may act in an inappropriate way which may
consequently produce more damage than malicious act (an intrusion or infection by
computer virus) itself. Such problems are called controllability problems.

There is another group of problems, which disturbs more people who produce or
develop protection tools. It is the problem of definitions. It is hard to discern “normal”
from “abnormal” behavior in the information systems and therefore to produce exact
models or patterns of “abnormal” behavior which could be automatically included in
protection tools.

To improve the control ability of a protection tool it is necessary to reduce the user’s
impact on the regulation process and to decrease error level. Both goals are possible
to obtain by automating the process and using adaptive control described earlier in
Chapter 4. Anyway, even that solution has several technical problems in practical

Chapter 6 Summary and Conclusions of Part I

6-5

implementations. The most important ones are the problems in choice of security
model and criterion of adaptation, recognition problems and performance problems.

When talking about protection systems in general it is important to stress that there
exist inherent vulnerabilities in today’s computing systems, inherited from the first
days of computing, such as universality of von Neumann’s architecture, recognition
problems caused by binary logic, etc.

6.2. Conclusions

The Part I describes security problems in today’s information systems. They are
numerous because today’s information systems were not built with security
requirements from the beginning. There are also many protection tools, which are
designed to protect more or less efficiently information systems from malicious
activities. However, even the best protection systems have their vulnerabilities.

The security weaknesses include the very basics of today’s computing and network
systems, such as binary logic and von Neumann’s architecture. The universality of
von Neumann’s architecture, which is very convenient from the user’s point of view,
is inconvenient regarding security requirements. It is important to stress that anything,
which can be programmed, may be programmed to perform malicious activities in the
system and it is very difficult to discern such an attempt from the “normal” activities
before some damage is done.

Binary logic is a basic of today’s computing, i.e. everything is performed through the
sequences of zeros and ones. While it makes computing easy, it is an obstacle
considering security requirements for exact pattern recognition. Although there are
the methods to circumvent this inconvenient bound, it still remains the problem,
which can be solved in satisfactory way by changing the binary logic to multivalued
logic.

Having in mind these two major obstacles to information systems security, in the Part
II of the thesis some other possibilities in the logic and architecture will be offered so
to have security requirements built from the start in information systems.

Chapter 6 Summary and Conclusions of Part I

6-6

PART TWO

Building Secure
Information Systems

Chapter 7 What is secure information system?

7 - 1

7. WHAT IS SECURE INFORMATION
 SYSTEM?
In previous chapters information analysis did not include semantic aspects (meanings)
of information. In the sequel these features of information will be discussed too.

7.1. Semantic Definition of Information

When trying to define information semantically we have to include an observer
(human being or physical device). The observer O monitors the source of information
S. Suppose that observed source S can be described by pair of spaces, i.e.
S = {{{{ΩΩΩΩ, ΩΩΩΩ*}}}}. ΩΩΩΩ is the space of symbols, i.e. syntactic space, while ΩΩΩΩ* is space of
meanings, i.e. semantic space. Space ΩΩΩΩ contains elements ααααi, while space ΩΩΩΩ* contains
elements ai. There is relation between the elements of space ΩΩΩΩ and space ΩΩΩΩ*. Ordered
pair {{{{αααα0, a0}}}}is called lexeme, which means the symbol and the meaning associated
with it. From the other point of view element a can be considered as object in real
world, while element αααα can be considered as an image of a. It is the static definition.

Dynamic definition can be introduced by including process of observation. Suppose
that observer O observes an object and absolute observation is described by pair
{{{{αααα, a}}}}. The elements αααα and a are observed in the same time with intention to
determine their exact values. The observation of αααα and a cannot be performed
separately. The observer uses αααα to determine a and vice versa. It is also supposed that
there exists absolute symmetry between the observed pair of variables, i.e. the process
of observing may be described by recursive scheme αααα→→→→a and a→→→→αααα. Symbol maps to
meaning and meaning maps to symbol.

To quantify described process of observation it is necessary to associate numeric
values to variables αααα and a. Suppose that αααα and a change continually in the space.
From mathematical point of view it can be assumed that continual variables αααα and a
are elements of R, where R is the space of real numbers. It can be also supposed that
for variables αααα and a is possible to determine uncertainty by Shannon's differential
entropy:

 (7.1.1.)

There are four axioms, which describe the process of observation [28].

Axiom 1. The main task of an observer O is to determine the exact values of αααα and a.
Anyway, the result of observation can be only more or less approximate value of
observed variables. The observed values are αααα* and a*, which are linear combinations
of αααα and a:

����
∞∞∞∞

∞∞∞∞−−−−

−−−−==== dxxldpxpXH)()()(

Chapter 7 What is secure information system?

7 - 2

 (7.1.2.)

 (7.1.3.)

The Axiom 1. basically says that there exists a relation between αααα and a on the level
of observation. The more general form of this relation is non-linear, i.e. αααα*=f1(αααα,a)
and a*=f2(αααα,a). For local observations the functions f1(αααα,a) and f2(αααα,a) may be
approximated by linear transformations, so that Axiom 1. holds for observations with
small variations of observed parameters.

Figure 7.1.1. Model of observation

Axiom 2. The process of observation is performed in the way that it does not destroy
the information nor it produces new information. If the pair {{{{αααα0, a0}}}} created by
information source is observed, the process of observation has no influence to the
total amount of information available at information source. It is the supposition of
preservation of the information.

Axiom 3. For the special case when αααα ≡≡≡≡ a, the process of observation is reduced to:

 (7.1.4.)
Where G is constant amplification.

Axiom 4. It is supposed that uncertainty of information can be measured by Shannon's
entropy. The entropy of observed variable αααα is H(αααα), and of variable a is H(a). The
mutual entropy of pair {{{{αααα, a}}}} is H(αααα, a). The entropy for above defined process of
observation is given by:

 (7.1.5.)

agg 1211* ++++==== αααααααα

agga 2221* ++++==== αααα

IMAGE
SYMBOLISM

ΩΩΩΩ

OBJECT
SEMANTICS

ΩΩΩΩ *

αααα * = g11αααα + g12a

a* = g21αααα + g22a

αααα

a

αααα *

a*

INFORMATION
 SOURCE
 S

OBSERVER
 O

RESULT OF
OBSERVATION

αααααααα ⋅⋅⋅⋅==== G*

���� ����
∞∞∞∞

∞∞∞∞−−−−

∞∞∞∞

∞∞∞∞−−−−

⋅⋅⋅⋅−−−−⋅⋅⋅⋅++++==== dadggggldapaHaH αααααααααααααααα ||),(),(*)*,(21122211

Chapter 7 What is secure information system?

7 - 3

If the Axiom 2. about preservation of information is to be valid, then H(αααα*,a*) has to
be equal to H(αααα,a), which means that second part of the equation (7.1.5.) has to be
equal zero, so it has to be:

 (7.1.6.)
Several functions may fulfill condition (7.1.6.). The following functions may be
chosen for required coefficients gij:

 g11 = cosh ωωωω, g12 = sinh ωωωω, g21 = sinh ωωωω, g22 = cosh ωωωω
 (7.1.7)
where ωωωω is element of R, set of real numbers. ωωωω is parameter for adjusting the
properties of observer.

The equations of observation process (7.1.2.) and (7.1.3.) may be rewritten as:

 (7.1.8.)

 (7.1.9.)
If observer O is observing pair of variables {{{{αααα, a}}}}, where αααα and a are elements of R,
and sees {{{{αααα*, a*}}}} as a result of observing, then exists ωωωω, which is also element of R,
so that equations (7.1.8.) and (7.1.9.) are satisfied. Parameter of observing ωωωω presents
the error factor. If ωωωω = 0, observed variables correspond exactly to those produced by
the source of information and there are no errors of observation. The choice of
parameter ωωωω designates deviations ∆∆∆∆αααα and ∆∆∆∆a of observed variables from the ones
produced by the source of information. For small values of |ωωωω| transformations by
equations (7.1.8.) and (7.1.9.) are linear. The equations of observation (7.1.8.) and
(7.1.9.) can be applied to any pair of symbol and related meaning {{{{αααα, a}}}}.

7.2. Observation of uncertainties in information

Suppose now that αααα is symbol which is word from some language and that a is real or
abstract object (meaning of word). Therefore pairs {{{{αααα, a}}}}have no numerical values.
Suppose also that observer may directly observe amounts of uncertainty contained in
αααα and a. It can be said that observer is sensitive to quantities of entropies H(αααα) and
H(a). The process described corresponds to usual situations, which can be
encountered in communication when observer receives lexeme (in linguistic sense),
i.e. the word αααα and its meaning a. It is obvious that αααα and a cannot be evaluated
numerically, so the four axioms presented earlier can be applied only indirectly. The
variables, which may be evaluated numerically are entropies H(αααα) and H(a).

Observer is considering the quantity of uncertainty related to appearance of word αααα
separately from the uncertainty related to appearance of associated meaning a. That
way the observer (recipient of information) uses possible meaning of word to discover

1|| 21122211 ====⋅⋅⋅⋅−−−−⋅⋅⋅⋅ gggg

ωωωωωωωωαααααααα sinhcosh* ⋅⋅⋅⋅++++⋅⋅⋅⋅==== a

ωωωωωωωωαααα coshsinh* ⋅⋅⋅⋅++++⋅⋅⋅⋅==== aa

Chapter 7 What is secure information system?

7 - 4

its symbolism and vice versa, i.e. the observer may use symbolic knowledge of
received word to reveal its semantics.

Figure 7.2.1. Model of observation of uncertainties in information

The axioms described earlier can be applied to observed entropies, where
H(αααα*) = Hr(αααα) and H(a*) = Hr(a) are relative entropies. Applying the equations of
observation (7.1.8) and (7.1.9.) new equations are obtained:

 (7.2.1.)

 (7.2.2)

7.3. Secure information

Confidentiality, integrity and availability of information typically characterize the
information security. Some of the security threats to information confidentiality,
integrity and availability were described in previous chapters .

Confidentiality means controlled release of information and protection from
unauthorized access. Threats to confidentiality arise from cracking, stealing
information, fraud, etc.

Integrity represents the control of modifications and correct and authorized
information transaction. Threats to integrity appear as processing of incorrect
information due to equipment failure, human and software errors, malicious damage,
fraud, etc.

Availability means that information is available when required and that the denial of
service will not occur. Threats to availability arise due to equipment failure or
overload, denial of service attacks, malicious damage, theft of resources, etc.

IMAGE
SYMBOLISM

ΩΩΩΩ

OBJECT
SEMANTICS

ΩΩΩΩ *

INFORMATION
 SOURCE
 S

OBSERVER
 O

RESULT OF
OBSERVATION

H(αααα)

H(a)

H(αααα *)

H(a*)

ωωωωωωωωαααααααα sinh)(cosh)()(⋅⋅⋅⋅++++⋅⋅⋅⋅==== aHHH r

ωωωωωωωωαααα cosh)(sinh)()(⋅⋅⋅⋅++++⋅⋅⋅⋅==== aHHaH r

Chapter 7 What is secure information system?

7 - 5

When the threat to information is realized, we say that an information security
incident did happen. An incident is defined as an action likely to lead to grave
consequences [36]. In terms of information technology, it is anything that happens to
information that is not desirable. As mentioned earlier an incident can be any attack
ranging from relatively harmless attempts such as sharing of password, unauthorized
attempted login from remote site to more serious attacks such as cracking, computer
viruses or worms, denial of service attacks, etc.

Every incident is actually breaking of Axiom 2., which assumes the preservation of
information. When an incident happens, there is broken path between the information
source S and the observer O and an unauthorized modification of information is
inserted.

There are basically two possible cases:

- denial of service, where path from the source of information is completely broken
or information is destroyed and observer receives no information at all from the
source (Figure 7.3.1.)

- unauthorized modification, where observer receives the information which is
modified on its path from the source to observer without his or her consent
(Figure 7.3.2.)

Figure 7.3.1. Denial of service

Figure 7.3.2. Unauthorized modification of information

IMAGE
SYMBOLISM

ΩΩΩΩ

OBJECT
SEMANTICS

ΩΩΩΩ *

INFORMATION
 SOURCE
 S

OBSERVER
 O

RESULT OF
OBSERVATION

?

?

IMAGE
SYMBOLISM

ΩΩΩΩ

OBJECT
SEMANTICS

ΩΩΩΩ *

INFORMATION
 SOURCE
 S

OBSERVER
 O

RESULT OF
OBSERVATION

H(αααα)

H(a)

H(ββββ*)

H(b*)

H(ββββ)

H(b)

UNAUTHORIZED
MODIFICATION

INCIDENT
 I

Chapter 7 What is secure information system?

7 - 6

In the case of unauthorized modification the observer receives information with
uncertainties which can be expressed through entropies H(ββββ) and H(b). The observed
entropies H(ββββ*) and H(b*) are no longer functions of primary parameter of
observation ωωωω, which means that equations (7.2.1.) and (7.2.2.) are no longer valid.
There should be considered another parameter of observation, e.g. θθθθ. The equations
(7.2.1.) and (7.2.2.) are therefore changed to:

 (7.3.1.)

 (7.3.2.)

The security of information can be expressed through before mentioned axioms:

- the Axiom 1., which says that there exists a relation between symbol (word) αααα and
its meaning a, is assumed to be a normal situation in usual information exchange
between the source of information and the observer

- the Axiom 2., which says that information should not be destroyed in the process
of observation nor that the process of observation is allowed to produce new
information, is the most important axiom regarding security of information. The
confidentiality, integrity and availability, which characterize the secure
information, can only be preserved if the Axiom 2. is held during the whole
process of observation.

- the Axiom 3., which describes the reduced process of observation, is not much
relevant to information security.

- the Axiom 4., which explains how the uncertainty of information can be measured
by Shannon's entropy, is also important to information security, because it gives
the formal tools for measuring uncertainties of information through equations of
observation process.

There is also one more axiom to be added to previous axioms:

- the Axiom 5., which says that if an unauthorized modification of information
occurs, then the observer must be able to notice and (possibly) correct unwanted
modifications.

The consequences of Axiom 5. are following:

- the observer must notice the difference between H(ββββ*), H(b*) and H(αααα*), H(a*),
respectively

- the observer must notice the difference between parameters of observation, ωωωω and
θθθθ, and (if possible) correct the wrong parameter to achieve minimal difference, i.e.
to set θθθθ = ωωωω

- the observer should have some previous knowledge about expected results of
observation to be able to notice the differences between correct and incorrect
information.

θθθθθθθθββββββββββββ sin)(cosh)()(*)(⋅⋅⋅⋅++++⋅⋅⋅⋅======== bHHHH r

θθθθθθθθββββ cosh)(sinh)()(*)(⋅⋅⋅⋅++++⋅⋅⋅⋅======== bHHbHbH r

Chapter 7 What is secure information system?

7 - 7

7.4. Secure Information Systems

In the Part I of the thesis the security threats to information systems were represented
as a noise in communication channel. The concept of the information did not include
the semantic aspect of information. The incompleteness of such an approach was
summarized in the Chapter 5. It was stressed that is difficult to discern between
"normal" and "abnormal" activities in today's information systems, partly due to
inherent vulnerabilities in such systems themselves. They have not been built with
security requirements from the very beginnings. That is where present vulnerabilities
come from.

The present protection systems are mostly designed to work separately from the
information systems. That scheme does not have to be basically wrong as long as user
(observer) of information system receives the information he or she considers correct.
That situation is shown on the Figure 7.4.1. where observer O is omitted, but is
implicitly present through results of observation.

Figure 7.4.1. Attacked Information System with Protection Tool

Anyway, even the best protection tools of today may fail. The Figure 7.4.1. presents
an ideal situation where protection tool is able to completely return primary
information from information source. Unfortunately, there is no such an ideal tool
currently. The concept of an automated adaptive protection tool was presented in
Chapter 4, which is closest by its conceptual design to the desired ideal protection
tool. Anyhow, even that solution has several technical problems in practical
implementations, the most important being recognition and performance problems.

An ideal protection tool should satisfy before mentioned five axioms. The most
important are certainly Axiom 2. and Axiom 5. The introduction of Axiom 5. requires
a new quality of protection tool. It is not enough that tool is automated and adaptive
(to avoid user's mistakes). The tool should behave as an intelligent observer, capable
to recognize "abnormal" patterns in information flow. It should also have ability of
making some decisions and to be able to completely reconstruct the information
before unauthorized modification. The Figure 7.4.2. presents such a situation.

IMAGE
SYMBOLISM

ΩΩΩΩ

OBJECT
SEMANTICS

ΩΩΩΩ *

INFORMATION
 SOURCE
 S

PROTECTION
 TOOL
 PT

RESULT OF
OBSERVATION

H(αααα)

H(a)

H(αααα *)

H(a*)

H(ββββ)

H(b)

UNAUTHORIZED
MODIFICATION

INCIDENT
 I

H(αααα)

H(a)

Chapter 7 What is secure information system?

7 - 8

Figure 7.4.2. Attacked Information System with an Artificial Intelligent Observer

To have an intelligent observer is certainly not enough to consider such an
information system completely secure. There should be more intelligent observers
incorporated into information system. They should be distributed through the
information system's architecture and able to communicate to each other. Such an
architecture with distributed intelligent observers will be discussed in more details in
subsequent chapters.

IMAGE
SYMBOLISM

ΩΩΩΩ

OBJECT
SEMANTICS

ΩΩΩΩ *

INFORMATION
 SOURCE
 S

ARTIFICIAL
INTELLIGENT
OBSERVER
 AIO

RESULT OF
OBSERVATION

H(αααα)

H(a)

H(αααα *)

H(a*)

H(ββββ)

H(b)

UNAUTHORIZED
MODIFICATION

INCIDENT
 I

H(αααα)

H(a)

Chapter 8 An Architecture for Intelligent Security System

8 - 1

8. AN ARCHITECTURE FOR
 INTELLIGENT SECURITY SYSTEM
In this Chapter the architecture for a distributed intelligent security system will be
introduced. The system is based on multiple independent entities working
collectively.

8.1. Intelligent Security System

The term "intelligent" in the name of this security system does not indicate that the
other security systems are non-intelligently constructed or designed. It simply means
that this security system will have some intelligent capabilities such as:
- the ability to learn or understand from experience
- the ability to acquire and retain knowledge
- the ability to respond quickly and successfully to a new situation
- the ability to make proper decisions, etc.

Such an intelligent system is shown on the Figure 8.1.1.

Figure 8.1.1. An Intelligent System

The main parts of an intelligent system are:

- knowledge base, which stores the facts (events) from its environment and
inference rules

KNOWLEDGE BASE
(INFERENCE RULES)
 (FACTS)

KNOWLEDGE
ACQUISITION
SYBSISTEM

OBSERVING
 ELEMENTS

INFERENCE
 ENGINE
(REASONING)

ADAPTATION
SUBSYSTEM

EXECUTIVE
ELEMENTS

Chapter 8 An Architecture for Intelligent Security System

8 - 2

- inference engine, which is responsible for making decisions and performing
reasoning

- knowledge acquisition subsystem which collects the information from observing
elements and transfer it to knowledge base

- adaptation subsystem which transfer the decisions from inference engine to
executive elements

- observing elements which collect the information from the environment and
transfer it to knowledge acquisition system

- executive elements which perform required changes to environment

In the Chapter 4 the concept of automated adaptive protection tool was presented. It
was said then that such a concept is easier to realize in distributed environment. The
intelligent security system keeps some elements of that conception (e.g. adaptation),
but is to be from the start designed as the distributed system. The main advantages of
such an approach are avoiding single point of failure, redundancy of elements, greater
possibility of reconfiguration or addition of new elements.

The communication between the various parts of the system is more complex than it
is shown on the Figure 8.1.1. It has to have a sort of hierarchy between the levels and
also feedback connections. The simplest hierarchical scheme is presented on the
Figure 8.1.2.

ORGANIZATION LEVEL

COORDINATION LEVEL

EXECUTION LEVEL

Figure 8.1.2. Hierarchical scheme of communication

Chapter 8 An Architecture for Intelligent Security System

8 - 3

The intelligent system described above does not have to be security system. It
becomes security system when observing elements are monitoring activities, which
could possibly look like security incidents. The other parts: knowledge base, inference
engine, knowledge acquisition subsystem and adaptation subsystem, should contain
intelligence able to react to security incidents. Executive elements directed from the
higher levels of intelligence would perform necessary activities to prevent or stop
security incidents in real time.

8.2. System Architecture

The architecture of an intelligent security system can be presented in two ways:

- logical architecture,
- physical architecture.

8.2.1. Logical Architecture

The logical architecture is to be structured hierarchically in the order of increasing
precision with decreasing intelligence, so that the entropy of the system is kept
minimal. The principle of increasing precision with decreasing intelligence means that
there are different levels of intelligence as it was shown on the Figure 8.1.2. The
highest level of intelligence is the organization level where main decisions and rules
are generated. It is also the level where the lesser precision is required. The second
level is coordination level, which connects the organization and execution levels. In
this level the rules are more precise, but overall intelligence is decreased. Finally the
third level, which has the smallest intelligence, is the execution level where concrete
actions are performed. Combining Figures 8.1.1. and 8.1.2. rough logical hierarchy is
presented related to the components of intelligent system described earlier.

Figure 8.2.1. Logical Architecture

KNOWLEDGE BASE
(INFERENCE RULES)
 (FACTS)

KNOWLEDGE
ACQUISITION
SYBSISTEM

OBSERVING
 ELEMENTS

INFERENCE
 ENGINE
(REASONING)

ADAPTATION
SUBSYSTEM

EXECUTIVE
ELEMENTS

ORGANIZATION
 LEVEL

COORDINATION
 LEVEL

EXECUTION
 LEVEL

Chapter 8 An Architecture for Intelligent Security System

8 - 4

8.2.2. Physical Architecture

The intelligent security system is based on multiple more or less independent entities
working collectively. It has distributed architecture. The approximate scheme is given
on Figure 8.2.2.

Figure 8.2.2. Physical Architecture

In the overall information system there may be many intelligent security systems
working independently of each other or collectively. It is possible that certain
components work independently in the same intelligent system, but cooperate with the
components of the same level from the other intelligent systems.

 There are also more than one knowledge base. They may be somewhat redundant, i.e.
keeping the same knowledge data, but as they are storage places of dynamic type,
they also have to exchange new data between themselves.

The inference engines may contain reasoning mechanisms, which are somewhat
similar, but they also need to communicate between themselves and exchange the
rules, which may be different for the particular inference engine.

The similar reasoning is valid for other components, such as knowledge acquisition
subsystems, adaptation subsystems, observing elements and executive elements.
Sometimes they are simply multiplied for redundancy reasons, but in the real - time

KN. B. 1KN. AC. 1OB.EL.
 1 IN. EN. 1 AD. SUB.1

EX.EL.
 1

KN. B. 2KN. AC. 2OB.EL.
 2 IN. EN. 2 AD. SUB.2

EX.EL.
 2

KN. B. 3KN. AC. 3OB.EL.
 3 IN. EN. 3 AD. SUB.3

EX.EL.
 3

KN. B. = KNOWLEDGE BASE IN. EN. = INFERENCE ENGINE
KN. AC. = KNOWLEDGE ACQUISITION
 SUBSYSTEM

AD. SUB. = ADAPTATION
 SUBSYSTEM

OB. EL. = OBSERVING ELEMENTS EX. EL. = EXECUTIVE ELEMENTS

COMMUNICATION BETWEEN THE LEVELS OF THE SAME
INTELLIGENT SYSTEM

COMMUNICATION BETWEEN THE SAME LEVELS OF THE
DIFFERENT INTELLIGENT SYSTEMS

Chapter 8 An Architecture for Intelligent Security System

8 - 5

work, they could evolve and become more differentiated. Because of that, they have
to communicate between themselves during their work.

It is important to notice that this architecture is highly distributed, although it may
exist on the single machine, in which case the various components are software
entities. This architecture may be realized in networked environment too, where
components may be hardware units.

8.3. Components of the Architecture

The components of above described intelligent security system architecture will be
presented beginning from the lowest level of intelligence, transferring through the
higher levels of intelligence and getting back again to the lower levels of intelligence.

8.3.1. Observing elements

An observing element is the entity, which works on the lowest level of intelligence. It
basically consists of two elements: an observing agent and an observing transceiver.
The structure of an observing element is shown on the Figure 8.3.1.

Figure 8.3.1. Observing Element

The observing agent monitors activities, which might be "abnormal" or "interesting"
(for some definitions of abnormal and interesting). For example, an agent could be
looking for a large number of telnet connections to a protected host, and consider the
occurrence of that event as suspicious. The agent would then generate a report that is
sent to its transceiver. The transceiver then sends the appropriate signal to the higher
level of intelligence. There may be more agents connected to one transceiver. The
agents do not communicate directly with each other. Instead, they send all their
messages to the transceiver. The transceiver decides what to do with the information
based on agent configuration information. The transceiver may start or stop agents
according to the directions from the higher levels. It also does appropriate processing
(analysis or reduction) of the information received from agents. The transceiver is
able to communicate with other transceivers on the same level of intelligence if
necessary.

OBSERVING
 AGENT

OBSERVING
TRANSCEIVER

EXECUTION LEVEL COORDINATION
 LEVEL

ENVIRONMENT
(PROCESS)

Chapter 8 An Architecture for Intelligent Security System

8 - 6

The agents and transceivers should be composed simply enough, so they could get
exchanged easily in the case of malfunction.

8.3.2. Knowledge Acquisition Subsystem

Knowledge acquisition subsystem collects the information from observing elements
(execution level) and transfers it to the higher level of intelligence. This subsystem
works on higher level of intelligence than observing elements. It is the coordination
level. The knowledge acquisition subsystems contains the units shown on the Figure
8.3.2.

Figure 8.3.2. Knowledge Acquisition Subsystem

The control units receive messages from the observing transceivers. According to
predefined threshold they will filter those messages further, so that the parts of
messages with "suspicious" content are proceeded to the next level and others are
discarded.

Message from control unit is sent further to the appropriate coordinator. The
coordinator is designed to perform the coordination between different events received
through multiple controllers. It sorts the reported events by predefined arrangement
scheme. The coordinator sends then such an ordered list to the dispatcher.

The dispatcher is supervising the coordinators. The dispatcher sends collected lists of
events from various coordinators to higher level. Communication between the
different coordinators is performed through a dispatcher.

CONTROL
 1

COORDI -
NATOR 1

DISPATCHER

CONTROL
 2

CONTROL
 3

CONTROL
 4

COORDI -
NATOR 2

COORDINATION LEVELEXECUTION
 LEVEL

ORGANIZATION
 LEVEL

Chapter 8 An Architecture for Intelligent Security System

8 - 7

8.3.3. Knowledge Base

Knowledge base represents the highest level of intelligence, i.e. organization level.
The knowledge base contains the components shown on the Figure 8.3.3.

Figure 8.3.3. Knowledge Base

The knowledge database contains records about known regular and irregular states of
the system. Receiving new lists of irregular actions from the dispatcher of knowledge
acquisition subsystem may expand it. There may be more than one such a database.
The knowledge database requires human expert to define the primary records.

The unit of inference rules contains the rules needed to define plans of actions, which
are sent to inference engine. Some of the rules are built in a priori. The other rules can
be learned during the work according to records in the knowledge database. These
two units need human supervision, because they are the most important units in the
organization level. If they fail, the rest of the intelligent system may be
malfunctioning too.

The problem description unit serves as a clipboard for the current problem, which has
to be solved. It receives the report from the dispatcher and compares it with the
content of knowledge database for control and update of database.

The problem status unit exchanges data with the inference rules unit. It sends the
results of plan calculations to the inference engine.

The knowledge base units work together on the way, which is most similar to the
human recognition center in the brain. It receives the necessary data about the
problem from the lower level of intelligence, analyses the problem and defines

KNOWLEDGE
 DATABASE

INFERENCE
 RULES

PROBLEM
 STATUS

PROBLEM
DESCRIPTION

COORDINATION
 LEVEL

ORGANIZATION LEVEL ORGANIZATION
 LEVEL

Chapter 8 An Architecture for Intelligent Security System

8 - 8

roughly the plans for the solution of the problem. It also has ability of memorizing
and learning.

8.3.4. Inference Engine

Inference engine is also a part of organization level, i.e. the highest level of
intelligence. Its elements are shown on the Figure 8.3.4.

Figure 8.3.4. Inference Engine

The reasoning unit performs the translation of the results of plan calculations,
received from the problem status unit, to decision rules. It performs decision making
and planning according to received results.

Explanation unit transforms the decision rules from reasoning unit further to the form,
which is acceptable by units on the lower level of intelligence. It also sets the
adaptation criterion for the adaptation subsystem.

The inference engine is executive part of the highest level of intelligence. Its
performance resembles to the decision making part of the human brain. It also has to
be carefully supervised by human expert, because its malfunctioning may have
impacts to the functioning of whole intelligent system.

8.3.5. Adaptation Subsystem

Adaptation subsystem is similar to the one described in the Chapter 4. It has the
similar function in the intelligent security system. It has to assure adaptive behavior of
the whole system. It means that this subsystem is responsible for the ability of system
to adapt to changes in its environment, which could possibly endanger the function of
complete information system. The elements of adaptive subsystem are shown on the
Figure 8.3.5.

ORGANIZATION LEVEL

REASONING
 UNIT

EXPLANATION
 UNIT

ORGANIZATION
 LEVEL

COORDINATION
 LEVEL

Chapter 8 An Architecture for Intelligent Security System

8 - 9

Figure 8.3.5. Adaptation Subsystem

Criterion unit checks if the signal, received from the explanation unit of inference
engine, is in the limits of the certain criterion of adaptation. If criterion of adaptation
is satisfied it sends a signal to adaptation unit.

The adaptation unit sends corresponding parameter of adaptation to the regulator. The
parameter of adaptation is formed according to signal received from the criterion unit.
It may range from "do nothing" command to the request for reconfiguration of the
parts of the whole system.

Regulator keeps information system in the standard (regular) state of performance,
according to the information received from the adaptation unit. Furthermore, it
performs the routines for the reconstruction of normal state. It may activate executive
elements as well as observing elements.

8.3.6. Executive Elements

An executive element is the entity, which works on the lowest level of intelligence. It
consists of two units: an executive transceiver and an executive agent. The
configuration of an executive element is given on the Figure 8.3.6.

Figure 8.3.6. Executive element

CRITERION
 UNIT

ADAPTATION
 UNIT

REGULATOR

ORGANIZATION
 LEVEL

COORDINATION LEVEL EXECUTION
 LEVEL

EXECUTIVE
TRANSCEIVER

EXECUTIVE
 AGENT

COORDINATION
 LEVEL

EXECUTIVE LEVEL ENVIRONMENT
(PROCESS)

Chapter 8 An Architecture for Intelligent Security System

8 - 10

The executive element executes the commands received from the adaptation
subsystem. The executive transceiver translates the directions from the regulator to
instructions understandable by executive agent. There may be more agents connected
to one transceiver. The transceiver may start or stop the agents according to
commands from the higher levels of intelligence. It also does appropriate processing
of the information received from the agents. The agents do not communicate directly
with each other, but via transceiver. It organizes and orders the information to or from
individual agents.

The executive agent performs actions requested by transceiver. The activity of the
agent may be simple, such as issuing an alarm, or more complex, such as removing
the intrusion entity (e.g. computer virus). The agents should be designed simply
enough, so they could get exchanged easily in the case of failure.

8.4. Communication Mechanisms

The transmission of messages between entities is a central part of the functionality of
an intelligent security system. If the communication between the entities is somehow
disrupted, it is possible that the system will stop working. The communication
mechanisms should be efficient and reliable in the sense that they should provide
reasonable expectations of messages getting to their destinations quickly and without
alterations. The communication mechanisms should be secure in the sense that they
should be resistant to attempts of rendering them unusable by flooding or overloading.
They should also provide some kind of authentication and confidentiality mechanism.

The three main types of communication may take place:
- one-to-many communication, as in the case of the transceiver sending a message

to several agents,
- many-to-one communication, as when the agents send information to the

transceiver,
- one-to-one communication, as when two elements communicate with each other.

There are several different communication schemes [39]. Message queues provide a
method of doing asynchronous message passing between processes and are an
effective method for transferring small amounts of data or messages between
individual components. However, this method is vulnerable to a denial of service
attacks, because any process that is running on the same system could create a
message queue, fill it with messages and never read from it. This act could, for
example, stop the agents from communicating with transceivers. Additionally, these
restrictions place a practical limit on the number of entities that may be running
simultaneously in the system. These problems can be partially solved by using
message queues until their limits are reached, and then switching to another (possibly
slower) method of communication.

When communication is performed in networked environment, there are two possible
solutions:
- use of an existing protocol, such as UDP or TCP, in a way that takes into account

its weaknesses to provide the needed functionality,

Chapter 8 An Architecture for Intelligent Security System

8 - 11

- design of a new protocol with the needs of intelligent security system in mind,
such a protocol might provide reliable transmission, low overhead, and security
mechanisms.

The main disadvantages of the first solution are its unreliability (in the case of UDP),
the overhead for reliability (in the case of TCP), and the lack of security features such
as encryption. The main drawback of the second solution is that the protocol design is
not a trivial task, and there are a lot of issues from proving its correctness to
implementing, fully testing and deploying it, which make it a very time-consuming
job. Nevertheless, that solution is interesting because the new protocol might be
tailored to the specific needs of the intelligent security system.

8.5. General Performance

The intelligent security system is defined to be a distributed hierarchical structure in
the order of increasing precision with decreasing intelligence. The intelligence is the
internal function and mechanism of the system, which produces enhanced
performance, generates and chooses from a set of alternative actions based on
accumulated information from a diverse set of agents, interacting with the
environment. Intelligent control is postulated as the problem of finding the right
sequence of internal decisions and controls for a system structured according to the
principle of increasing precision with decreasing intelligence such that it minimizes
its total entropy. The entropy satisfies the additive property and any system composed
of a combination of subsystems will be optimal by minimizing its total entropy.
Coordination of the different subsystems provides the means to integrate all
individual functions performed by each subsystem into one complex system.

The proposed hierarchy comprehends both fixed structure multi level control and
multi layer control nested in the first one. The overall system is basically decomposed
into subsystems controlled by organization level, with coordination level ensuring that
all interactions are taken into account. Aggregated information is used to define a
decision-making strategy. The number of levels is crucial since each level functions
with clearly defined objectives. Each level may be decomposed into several layers
depending on the complexity of the task to be executed.

The three levels are:
- the organization level,
- the coordination level,
- the execution level.

The organization level is basically structured of knowledge base and inference engine.
The coordination level is composed of a number of coordinators and controllers
supervised by a dispatcher (knowledge acquisition subsystem). Communication
between the different coordinators is performed through a dispatcher. On the other
hand there is adaptation subsystem on the same coordination level, which assures the
adaptive behavior of the overall system. Feedback information selectively received
from the execution level allows the coordination level to modify on line execution
scenarios. Selective feedback from this level is also communicated to the organization

Chapter 8 An Architecture for Intelligent Security System

8 - 12

level after the execution of the requested job. The execution level is composed from
transceivers and agents (observing elements and executive elements), which execute
specific functions. The overall system structure resembles that of a loosely coupled
parallel processing system.

Chapter 9 Modeling an Expert System

9 - 1

9. MODELING AN EXPERT SYSTEM
In this Chapter theoretical models for the expert system of an intelligent security
system will be introduced.

It was stated in the Chapter 5 that binary logic is an obstacle for present security tools.
While it makes computing easy, it can be a drawback considering security
requirements. For that reason, the other types of logic, such as fuzzy logic, will be
taken into consideration.

9.1. Fuzzy Logic

Fuzzy logic is a class of multivalent, generally continuous-valued logic based on the
theory of fuzzy sets. Fuzzy logic is concerned with the set theoretic operations
allowed on fuzzy sets, how these operations are performed and interpreted, and the
nature of fundamental fuzziness.[6]

Fuzzy logic is a calculus of compatibility. Unlike probability, which is based on
frequency distribution in a random population, fuzzy logic deals with describing the
characteristics of properties. Fuzzy logic describes properties that have continuously
varying values by associating partitions of these values with a semantic label. Much
of the descriptive power of fuzzy logic comes from the fact that these semantic
partitions can overlap. This overlap corresponds to the transition from one state to the
next. These transitions arise from the naturally occurring ambiguity associated with
the intermediate states of semantic labels.

Fuzziness is a measure of how well an instance (value) conforms to a semantic ideal
or concept. Fuzziness describes the degree of membership in a fuzzy set. This degree
of membership can be viewed as the level of compatibility between an instance from
the set's domain and the concept overlying the set. Some measurements have minimal
fuzziness or ambiguity, those that fall at the extreme edges of a fuzzy region, since
they are highly compatible with the set's concept. In between, these properties have
varying degrees of ambiguity. They can belong to different fuzzy sets simultaneously.

Crisp set is the term, which is usually applied to classical (Boolean) sets where
membership is either [1] (totally contained in the set) or [0] (totally excluded from the
set). Crisp sets, unlike fuzzy sets, have distinct and sharply defined membership
edges. An intrinsic property of a crisp set is the well-defined behavior of its members.
In particular, crisp sets obey the geometry of Boolean and Aristotelian sets. This
means that the universe of discourse for a set and its complement is always disjoint
and complete. Thus the relation A∩∩∩∩~A=∅∅∅∅ (also known as the Law of the Excluded
Middle) is always obeyed.

Fuzzy set differs from conventional or crisp set by allowing partial or gradual
memberships. A fuzzy set has three principal properties:

Chapter 9 Modeling an Expert System

9 - 2

- the range of values over which the set is mapped, this is called the domain and
must be monotonic real number in the range [-∞, +∞];

- the degree of membership axis that measures the value's membership in the set;
- the actual surface of the fuzzy set, i.e. the points that connect the degree of the

membership with the underlying domain.

The fuzzy set's degree of membership value is a consequence of its intrinsic truth
function. This function returns a value between [0](not a member of the set) and [1]
(a complete member of the set) depending on the evaluation of the fuzzy proposition
"X is a member of fuzzy set A". In many interpretations, fuzzy logic is concerned
with the compatibility between a domain's value and the fuzzy concept. This can be
expressed as "How compatible is X with fuzzy set A?".

The negation of a fuzzy set is the complement of the fuzzy set. The complement of
the fuzzy space is usually produced by the operation 1-µA(x). The fuzzy complement
indicates the degree to which an element (x) is not a member of the fuzzy set (A).
Unlike conventional crisp sets, an element is not either in or out of a fuzzy set, thus
the complement also contains members that have partial exclusions.

Degree of membership is the degree to which a variable's value is compatible with
the fuzzy set. The degree of membership is a value between [0] (no membership) and
[1] (complete membership) and is drawn from the truth function of the fuzzy set. The
term truth function is often used interchangeably with degree of membership.

Truth function is a view that the degree of membership axis of a fuzzy set or region
acts as a function µµµµA = T(x) for each unique value selected from the domain. The
function returns a unique degree of membership in the fuzzy region. It is called a
"truth" function since it reflects the truth of the fuzzy proposition "x is a member of
fuzzy set A".

Hedge is a term, basically linguistic in nature, which modifies the surface
characteristics of a fuzzy set. A hedge has an adjectival or adverbial relationship with
a fuzzy set. Hedges can:
- approximate a scalar or another fuzzy set (near, close to, around, about,

approaching);
- intensify a fuzzy set (very, extremely);
- dilute a fuzzy set (quite, rather, somewhat);
- create a complement of fuzzy set (not);
- intensify or diffuse through contrasting (positively, generally).
The definition and calibration of hedges play an important part in the construction and
validation of fuzzy systems.

Fuzzy numbers are numbers that have fuzzy properties. Models deal with scalars by
treating them as fuzzy regions through the use of hedges. A fuzzy number generally
assumes the space of a bell or triangular curve with the most probable value for the
space at the center of the curve. Fuzzy numbers obey the rules for conventional
arithmetic but also have some special properties.

Fuzzy operators are the class of connecting operators, notably AND and OR, that
combines antecedent fuzzy propositions to produce a composite truth value. The

Chapter 9 Modeling an Expert System

9 - 3

traditional Zadeh fuzzy operators use the min-max rules, but several other alternative
operator classes exist. Fuzzy operators determine the nature of the implication and
inference process and thus establish the nature of fuzzy logic for that implementation.

Min-Max rule is the basic rule of implication and inference for fuzzy logic that
follows the traditional Zadeh algebra of fuzzy sets. There are two statements of this
rule pertaining to different elements in the fuzzy logic process.

The min-max rule of implication specifies how fuzzy unions and intersections are
performed. When two fuzzy sets are combined with the intersection operator (AND),
the resulting fuzzy space is found by taking the minimum of the truth functions across
the compatible domains. When two fuzzy sets are combined with the union operator
(OR), the resulting fuzzy space is found by taking the maximum of the truth functions
across the compatible domains.

The min-max rule of inference specifies in a fuzzy system how conditional and
unconditional fuzzy assertions (propositions) are combined. An unconditional
assertion is applied to the consequent fuzzy region under generation by taking the
minimum of the unconditional's fuzzy space and the consequent's fuzzy space at each
point in the region. A conditional fuzzy proposition first has its truth reduced to the
maximum truth of the rule's premise, then it is applied to the consequent fuzzy region
under generation by taking the maximum of the conditional's fuzzy space and the
consequent's fuzzy space at each point in the region.

Rules are statements of knowledge that relate the compatibility of fuzzy premise
propositions to the compatibility of one or more consequent fuzzy space. The rules
most often have the IF...THEN structure.

The rule:
 IF x is high, THEN y is decreased;
is interpreted as a correlation between two fuzzy states such that the rule should be
read as:
 [to the degree that] x is high,
 y is [proportionally] decreased;
or, perhaps, in a slightly more formal statement considering the idea of fuzzy
compatibility:
 [to the degree that]x
 is [compatible with the concept] high,
 make y [compatible with the concept] decreased.

The proportionality needs not to be linear. In fact, the correspondence or compatibility
function between an antecedent fuzzy region and a consequent fuzzy state is
determined by:
- the shape of the fuzzy sets,
- the connector (implication) operators,
- the preponderance of truth in antecedent,
- the technique for transforming the consequent fuzzy region from the current fuzzy

state.

Chapter 9 Modeling an Expert System

9 - 4

9.2. Fuzzy Expert System
The organization level, as described in Chapter 8, may be structured to form an expert
system. That concept will be worked out in the terms of fuzzy logic.

9.2.1. Designing a Fuzzy Expert System

In developing an expert systems (or any other system) there are few steps to perform
[27]:
- the problem must be clearly defined as well as the purpose of the project,
- the range of the possible conclusions, which may be reached in addressing

particular instances of the project, should be laid out,
- the input and output data, which will be needed to reach the conclusions and thus

achieve the predefined purpose, should be defined,
- the reasoning process, which the expert goes through to relate input to proper

output data, should be defined,
- backtracking and revision of earlier steps is to be performed.

In designing a fuzzy expert system there are also other aspects to be considered. There
are several choices for the input data, breaking down into two categories: crisp (non-
fuzzy) or fuzzy. The operation on input data, which is very interesting for an expert
system, is comparison, because the rules will be often based on comparisons of the
input data to values.

If the input data are strings, the only comparison, which can be made is crisp (non-
fuzzy) checking of two strings for equality or inequality.

If the input data are numbers, the comparison may be crisp or fuzzy. If the
comparison is crisp, the two numbers can be compared by using comparison
operators: < (less than), <= (less than or equal to), = (equal), > = (greater than or equal
to), > (greater than) and <> (not equal). The number compared can be an input value
or a number computed from input values. The number compared to can be a fixed
value, another input value or a value computed from input values.

If the comparison is fuzzy, there are two major types of comparisons, depending on
whether the input number is to be compared to a fixed standard using fuzzy set or to a
number derived from an input number using approximate comparisons.

An input number, or a number derived from an input number, can be categorized
using word descriptors such as "Large" or "Small" by the fuzzification procedure.
This procedure permits writing rules using such phrases as "x is Large" or "y is
Small".

Approximate comparisons can use phrases such as "x ~= about 5", where symbol ~=
means "approximately equal to". A full range of approximate numerical comparisons
is available: ~<, ~<=, ~=, ~>=, ~>, and ~<> corresponding to the equivalent crisp
comparisons.

The use of word descriptors is especially useful when is known in advance what the
descriptive word mean. The approximate comparisons are very useful when there are

Chapter 9 Modeling an Expert System

9 - 5

not certainty about what either of the numbers being compared are until the program
is running.

As the process proceeds from defining overall aims through specific conclusions
which may be reached to definition of data required, it will probably be necessary to
start building up a multi-step reasoning process with intermediate conclusions. Such a
multi-step reasoning process is almost always to be expected in expert systems. The
initial data lead to preliminary conclusions as output from the rules. These in turn
serve as input to succeeding rules, quite possibly leading to acquiring more data, or
take a fresh look at the problem using the old data.

9.2.2. Rule-Based Reasoning

Having some data and some conclusions, which are to be evaluated, it is necessary to
lay out reasoning process, which connects data to conclusions.

The formalism used by fuzzy expert production systems is a set of rules of the type:

IF (certain specified patterns occur in the data)
THEN (appropriate actions are to be taken, including modifying old data or
 asserting new data)

The IF part of the rule (left-hand side of the rule) is known technically as the
antecedent or LHS. The THEN part of the rule (right-hand side of the rule) is called
the consequent or RHS. The antecedent consists of tests to be made on existing data.
The consequent holds actions to be taken if the data pass the tests in the antecedent.

For specific data, which satisfy the antecedent, the inference process should compute
the confidence (membership degree, truth function) that the entire antecedent is true.
This antecedent confidence, together with the confidence in the rule itself, should
become the confidence with which actions specified by the consequent are taken. In
particular, any data modified or created by the consequent should have that
confidence attached.

A rule is fireable if the data yield an antecedent confidence above the rule firing
threshold. To be actually fired, the rule must also be turned on for firing and the rule
must be picked for firing.

The flexibility offered by the rule paradigm for formalizing thinking is very
convenient. The antecedent can include reasoning in terms of words rather than
numbers, approximate comparisons, and qualifiers (hedges) applied to word
descriptors. The consequent can include a large variety of actions, including
modifying or deleting the data, reading or writing data files, writing or reading from
the screen, turning rules or block of rules on or off, etc.

Chapter 9 Modeling an Expert System

9 - 6

9.2.3. Reasoning Patterns and Rule-Firing Schemes

The confidence that the rule is active and the antecedent is true is called the posterior
confidence. That term is used since it cannot be determined until the antecedent
confidence is known as well as the rule confidence. The posterior confidence of an
instance of a rule is the minimum of the rule confidence and the antecedent
confidence. The rule fireability is determined solely by the antecedent confidence.
The posterior confidence does not come into consideration until the actual firing of
the rules is concerned.

The backbone to any expert system is the inference engine, which processes the rules
and data and decides what to do next.

There are two possibilities for rule firing: serial and parallel. Serial rule firing
corresponds to deductive logic, and it involves firing one rule at a time, and
reevaluating rule firing after each step. The parallel rule firing corresponds to
inductive logic, and it fires all fireable rules effectively at once. Which type is better
depends partly on the problem, partly on how the input data are acquired.

Serial rule firing with backtracking has been widely used in artificial intelligence.
This mode amounts to a depth-first search of a decision tree. As a rule is fired, a
number of other possibilities may open up. A newly fireable rule will correspond to
each of the possibilities. The most likely rule for firing is selected, the others are put
on the stack for future reference, and the selected possibility is verified. In the case of
success, more possibilities may open up, and other rules may become newly fireable.
The whole process is repeated again, i.e. the most likely rule is selected, the others are
put on the stack, and the selected one is verified. This process is repeated until a final
answer is verified or until a possibility is rejected. If a possibility is rejected in any
stage, and no new rules become fireable, the rules stacked for future reference are
retried. The last one stacked is popped off the stack, fired and verified. The process of
popping a previously saved possibility off a stack is called backtracking, and is very
important for this reasoning process. The process of a depth-first search is shown on
the Figure 9.2.1.

Figure 9.2.1. Depth-First Search of a Decision Tree with Backtracking

The alternate reasoning strategy is parallel rule firing. It is much more akin to
inductive pattern recognition than is serial rule firing. This strategy is particularly
useful when multiple fuzzy sets are employed. The data makes rules fireable or not. In
one round of parallel firing all fireable rules are fired, no fireable but unfired rules are

r1

r2 r3 r4

r5 r6

r7 r8

r9 r10

Chapter 9 Modeling an Expert System

9 - 7

left over for backtracking. The sequence of operations in round of parallel rule firing
is:
- a list is made of rules made newly fireable by the data;
- these rules are fired and a list prepared of data modifications called for;
- only those data modifications permitted by the truth maintenance system are

carried out.
This sequence is shown on the Figure 9.2.2.

Figure 9.2.2. A Round of Parallel Rule Firing

9.2.4. Fuzzification and Defuzzification

Fuzzification is the process of translation of input numbers into confidences in a
fuzzy set of word descriptors. That is done by membership (or truth) functions. The
mapping of numeric values into confidence levels for word descriptors usually
involves ambiguities. For example if words very low, low, medium, high and very
high, are used to express e.g. degrees of risk, some expert will call a certain risk
"low", and another will say "medium". For that reason, the overlapping membership
functions are used, so the descriptors "low" and "medium" will both carry non-zero
truth values. It is generally mistake to try to resolve such ambiguities, since all
descriptors with non-zero truth values have some degree of validity.
The use of overlapping membership functions is extremely important in fuzzy
reasoning problems. In fuzzy process control, two adjacent membership functions
tend to cross at about half of full confidence. In fuzzy reasoning it is usually advisable
to have adjacent membership functions cross at full confidence.

The shape of membership function may be linear or curvilinear (s-shape or bell
shape). The shape of membership functions follows definite patterns: as the input
number increases, the membership function either start at full confidence and come
down to zero; start at zero, come up to full confidence, and then decline to zero again;
or start at zero, come up to full confidence and stay there.

The Figure 9.2.3. shows an example of the membership functions for a fuzzy set of
Risk descriptors, such as Small, Medium and High.

Defuzzification is the reverse process of fuzzification. It is intuitive that fuzzification
and defuzzification should be reversible, that is, if a number is fuzzified into a fuzzy
set and immediately defuzzified, the same number should be get back again.

r1 r2 r3 r4 r5 r6 r7

Fuzzy Truth Maintenance System

Chapter 9 Modeling an Expert System

9 - 8

Figure 9.2.3. Membership Function for a Fuzzy Set of Risk Descriptors

Defuzzification or decomposition is the process of deriving the expected value of a
model solution variable from a consequent fuzzy region. There are several common
types of decomposition available in fuzzy system modeling, including composite
moments, composite maximum, composite mass, reduced entropy and plateau
positioning

Composite mass is a defuzzification method that produces the expected value for a
consequent variable by examining the area of the fuzzy consequent that has the
highest intersection density of premise fuzzy sets. This will be the area where is the
preponderance of rules executed, thus establishing the "most votes" for a value from
this region. The composite mass decomposition technique applies the rules of
evidence in determining a value for the solution variable.

Composite maximum is a defuzzification method that produces the expected value for
a consequent variable by examining the edges of the fuzzy space across the fuzzy
region's domain. Composite maximum takes the point with the maximum truth value
along this edge and uses the domain value at that point as the solution value. If the
region is a single-edged plateau, the point of the left-most edge is selected. This
defuzzification method responds to the maximum truth value of any rule that fires in
the model.

Composite moments is a defuzzification method that produces the expected value for
a consequent variable by calculating the center of gravity (or first moment of inertia)
for the consequent fuzzy region. This is also called the centroid method. Composite
moments is widely used in process control and robotics since it tends to smooth out
the solution variable's fuzzy region, eliminating the abrupt value jumps that are often
associated with boundary movements in the composite mass and maximum methods.

0.00 2.00 4.00 6.00 8.00 10.00

0.00

0.20

0.40

0.60

0.80

1.00

0.00

0.20

0.40

0.60

0.80

1.00

0.00

0.20

0.40

0.60

0.80

1.00
Small Medium High

Chapter 9 Modeling an Expert System

9 - 9

Chapter 10 Implementing an Intelligent Security System

10 - 1

10. IMPLEMENTING AN INTELLIGENT
 SECURITY SYSTEM
In this chapter the implementation of an intelligent security system will be presented.
The implementation of an intelligent security system is to be carried out on the basis
of the concept presented in Chapter 8 and theoretic framework presented in Chapter 9
The main goal is to emulate an intelligent reaction to "suspicious" actions, which
might occur in the information system. The prototype presented in this chapter was
mainly developed for protection from computer viruses, worms and Trojan horses, but
it is intended to be expanded to other types of misuse of information systems in near
future.

The working name of prototype was chosen to be Nisan, which is the name of
historically first month of the Hebrew calendar. The month of "Nisan" both in Hebrew
and Arabic, inaugurates Spring, the season of new beginnings. The main reason to
choose this name was the fact that it is very first version of an intelligent security
system prototype, so the name looked convenient and easy to remember.

10.1. The Development Platforms, Programming Languages
 and Tools

The prototype Nisan was mainly developed on Unix platform (Solaris 2.7), but its
executive parts are situated on MS Windows 98/NT platform.

The main programming language was Tcl, version 8.0. It is a scripting language
developed in the 1980s by John Ousterhout, while he was a professor at the
University of California, Berkley. It is currently under the ownership of the Sunscript
Group of Sun Microsystems Inc., managed by John Ousterhout. Tcl was chosen
because it is easy to use and therefore suitable for developing first prototype. Since it
is an interpreted language, every Tcl program is simply one or more files of textual
commands that are executed by a Tcl interpreter program. On Unix, the first line of a
Tcl script identifies the Tcl interpreter to run; on MS Windows, unique file extensions
are used to identify the Tcl interpreter to run. The Sunscript Group at Sun
Microsystems provides two basic Tcl interpreter programs: tclsh and wish. Tcl
interpreters exist for most major operating systems, effectively making Tcl programs
platform-independent. Tools built on Unix can be moved directly to MS Windows,
and tools built on MS Windows can be moved directly to Unix workstations.

The interactive development nature of Tcl, combined with the fact that Tcl programs
require fewer lines of code than languages like C or C++, makes it fast and easy to
develop in. Tcl’s extensible architecture has encouraged many talented programmers
to develop new packages of commands, commonly known as extensions. These
extensions make developing Tcl applications even easier. Some of them are simply
libraries of useful Tk widgets, while others extend Tcl to handle things as diverse as

Chapter 10 Implementing an Intelligent Security System

10 - 2

database access, Web programming, object – oriented programming, and
multithreading.

However, interpreted languages like Tcl are slower than languages like C or C++ .
The Tcl language has only a single datatype: strings [38]. This can make handling
large, complex data structures inefficient. When performance is an issue, the Tcl can
be used as a “glue” language, that is it can be used for connecting together powerful
components built in other languages like C or C++. Therefore for the most complex
part of this prototype, i.e. inference engine, the Tcl extension fzy.so, developed by D.
Delija in [8], for the fuzzy code library developed originally by E.Cox in C++ [6] was
used.

For the fuzzy controller development some other tools were used. FOOL & FOX, the
package developed at the University of Oldenburg (FOOL – Fuzzy Organizer
OLdenburg), was used on Unix platform for better tuning of fuzzy sets. FOOL offers
a graphical user interface (GUI) for constructing the database, which will specify the
behavior of fuzzy controller. Specifications are written into a special database file
with extension .fol. The other part of the package, FOX, is a universal fuzzy
controller, which reads the database *.fol as its behavior specification and then scan
the input values, calculate these values as programmed with FOOL and finally write
the result into a file. Unfortunately, it was very difficult to integrate FOOL & FOX
into Tcl, so it was used as an off-line tool for verification of linguistic variables, their
adjectives and rules.

For some unknown reason the graphical presentation of fuzzy sets in FOOL & FOX
was not working, so this otherwise powerful tool was unusable for these purposes. For
visualization of fuzzy sets was used A-B Flex, a simpler tool for fuzzy simulations,
available for MS Windows platform. As its simulation part works on very
complicated way with MS Excel, it was used for graphic presentation only, and
FOOL & FOX for numerical analysis. However, the results obtained this way were
included in definition of fuzzy sets to be implemented in inference rules unit.

10.2. General Structure

The prototype was developed in the way to emulate two hosts sending reports to
central host for analysis. Because of the nature of particular attacks (e.g. massive virus
infection) it was impossible to obtain real conditions for testing. Several requests were
made, but no organization was willing to allow real-time infection by computer
viruses on its MS Windows systems, either on standalone or networked computers.
So, author of this thesis had to infect her two standalone computers at home running
MS Windows 98 (one of them borrowed for short period only for tests with viruses).
Generated reports obtained by anti-virus and integrity checker programs were then
transferred to remote Unix machine for further processing. The Unix system was
chosen for development because the Unix workstation had better performance and the
operating system is "immune" to possible infections by viruses, which can infect MS
Windows systems.

Emulation on Unix system is based on inter-processes communication and it is carried
out by sharing directories and files. The way of implementation is data flow between

Chapter 10 Implementing an Intelligent Security System

the processes. The structure of directories corresponds to the modules described in
Chapter 8, so that most often particular directory has name corresponding to its
concept counterpart. It is supposed that some modules will be physically placed to
different hosts, so they also have names of hosts attached to the name of module. The
scheme of directories is given on the Figure 10.2.1.
executable code:
/bin - general binaries
/bin_glavni - binaries for the host "glavni"
/bin_virusi - binaries for the host "virusi"

libraries:
/lib - dedicated libraries

cheking:
/check - general checking
/check_glavni - checking for the host "glavni"
/check_virusi - checking for the host "virusi"

/tmp - temporary directory

modules:
/report_inc_glavni - incoming reports from host "glavni"
/report_inc_virusi - incoming reports from host "virusi"
/filters_glavni - filters for host "glavni"
/filters_virusi - filters for host "virusi"
/transceiver_obs_glavni - observing transceiver for host "glavni"
/transceiver_obs_virusi - observing transceiver for host "virusi"
/controller_obs_glavni - controller for host "glavni"
/controller_obs_virusi - controller for host "virusi"
/coordinator_vir_in - coordinator for event "viruses"
/dispatcher_in - dispatcher input
/problem_description
/etc
 /knowledge_database
 /inference_rules
/problem_status
/reasoning_unit
/explanation_unit
/criterion_unit
/adaptation_unit
/regulator

(continued...)
10 - 3

Chapter 10 Implementing an Intelligent Security System

10 - 4

Figure 10.2.1. Structure of directories on emulation host

The executable programs are executed sequentially, one by one, but it is intended to
work as daemons in future (constantly present programs). Their functioning is easily
checked by logs in check directories. If the message (input file) is processed already
its name is recorded in check log, so it will not be processed again. For every
executable program there is dedicated library in directory lib. Method of naming is
code_name-of-module, e.g. code_filter_1.tcl.

Messages are mostly text files, which are processed by programs and transferred to
corresponding directories. All messages have standardized name format :
TYPE_TIME-STAMP_HOST(if needed, otherwise "-")_NAME-OF-
MODULE.EXT
where TYPE is an abbreviation of the name of the attack type, e.g. VIR for viruses.
An example of such a name is: VIR_670889101_VIRUSI_FILTER-SLOG.TXT

Tcl code for naming convention is contained in lib_names.tcl, which can be found in
Appendix C.

10.3. Implementation of Observing Elements

Observing elements on every host consists of three types of elements,which is
somewhat different from the concept presented in Chapter 8,: observing agents,
corresponding filters and observing transceivers.

Observing agents in this case were anti-virus scanner F-Secure for Windows 95
version 4.09.2220. and integrity checker Integrity Master version 4.21 a, both trial
versions. On host “glavni” only F-Secure was installed and on host “virusi” both tools
were installed. Both hosts were scanned and checked in regular state and “irregular”
state, i.e. with entities infected by computer viruses or worms. The reports of both
agents were stored on the hosts and later transferred to Unix emulation host. F-secure
gives two types of reports, one general with extension .LOG, which is plain text file
and other event-specific with extension .FPT. The later is not plain text file and it had
to be converted to such format, before sending it to Unix host. The report from
Integrity Master is also a plain text file with extension .REP.

The reports were stored in /report_inc_glavni and /report_inc_virusi directories on
Unix host. The examples of reports were as following:

(continued...)

modules
/output_glavni - output from regulator to executive transceiver on host "glavni"
/output_virusi - output from regulator to executive transceiver on host "virusi"
/transceiver_ex_glavni - executive transceiver for host "glavni"
/transceiver_ex_virusi - executive transceiver for host "virusi"

Chapter 10 Implementing an Intelligent Security System

10 - 5

Scan All Hard Disks when Idle SCANALLH.FPT A 2000.08.20 14:27 Scan Aborted
Scan All Hard Disks when Idle SCANALLH.FPT V 2000.08.20 15:21 Virus Alert:
Check the Results!
Scan Folder SCANAT.FPT K 2000.08.20 16:14 OK
Scan Folder SCANAT.FPT K 2000.08.20 16:15 OK

Figure 10.3.1. Report from F-Secure of type *.LOG on host “glavni”

Scanned at: 2000.08.20 15:21 Virus Alert!
Scanned by: S & R at glavni
F-Secure Anti-Virus for Windows version 4.09

Scan engines used:
F-PROT version 3.07.1204 (signatures database date 2000-05-30)
AVP version 3.133.2223 (signatures database date 2000-05-30)

Search: All Local HDDs
Action: Report Only
Targets: File viruses Boot sector viruses
Files: Executables

Results of virus scanning:
Scanned: 4 drive(s), 41928 file(s), 4 boot sector(s)

Time: 53 min 40 sec
Found: 21 infection(s), 0 suspected infection(s) in 16 file(s)
Disinfected 0 file(s)

c:\internet\eudora\attach\loveletter.zip\love-letter-for-you.txt.vbs
Infection: 'VBS/LoveLetter.gen' (exact) [F-PROT]
Infection: 'I-Worm.LoveLetter' [AVP]

c:\internet\eudora\attach\loveletter.zip
Infection: 'I-Worm.LoveLetter' [AVP]

f:\users\suzana\texts\xine-1.zip\tunnel.zip\da1.com
Infection: 'Test.1030' [F-PROT]

f:\users\suzana\texts\xine-1.zip\tunnel.zip\testb.com
Infection: 'Test.1030' [F-PROT]

f:\users\suzana\texts\xine-1.zip\xine-1.000\jupiter.bin
Infection: 'Sailor_Boot.A' image file (exact) [F-PROT]

f:\users\suzana\texts\xine-1.zip\mme.zip\da1.com
Infection: 'Test.1030' [AVP]

f:\users\suzana\texts\xine-1.zip\mme.zip\testb.com
Infection: 'Test.1030' [AVP]

f:\users\suzana\texts\xine-1.zip
Infection: 'Test.1030' [AVP]

f:\users\suzana\texts\xine-1.zip\viruses.zip\jupiter.bin
Infection: 'Sailor.Boot.a' [AVP]

f:\users\suzana\texts\xine-1.zip\viruses.zip\mars.exe
Infection: 'BinaryImage.Sailor.1108' [AVP]

f:\users\suzana\texts\xine-1.zip\viruses.zip\mercury.com
Infection: 'Sailor.834' [AVP]

f:\users\suzana\texts\xine-1.zip\viruses.zip\venus.exe
Infection: 'Corrupted.Sailor.785' [AVP]

f:\users\suzana\texts\xine-1.zip\viruses.zip\vvd.386
Infection: 'Trojan.Win95.VVD' [AVP]

f:\users\suzana\texts\xine-1.zip
Infection: 'Trojan.Win95.VVD' [AVP]
Infection: 'Trojan.Win95.VVD' [AVP]

Chapter 10 Implementing an Intelligent Security System

10 - 6

f:\users\suzana\texts\mme.zip\da1.com
Infection: 'Test.1030' [F-PROT]

f:\users\suzana\texts\mme.zip\testb.com
Infection: 'Test.1030' [F-PROT]

f:\users\suzana\texts\mme.zip\da1.com
Infection: 'Test.1030' [AVP]

f:\users\suzana\texts\mme.zip\testb.com
Infection: 'Test.1030' [AVP]

f:\users\suzana\texts\mme.zip
Infection: 'Test.1030' [AVP]

Figure 10.3.2. Report from F-Secure of type *.FPT on host “glavni”

Scan All Hard Disks when Idle SCANALLH.FPT A 20.08.2000 14:13 Scan Aborted
Scan All Hard Disks when Idle SCANALLH.FPT V 20.08.2000 14:18 Virus Alert:
Check the Results!
Scan A: SCANA.FPT K 20.08.2000 16:18 OK
Scan All Hard Disks when Idle SCANALLH.FPT K 20.08.2000 16:23 OK
Scan All Hard Disks when Idle SCANALLH.FPT V 20.08.2000 16:48 Virus Alert:
Check the Results!
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\EXPLORE.ZIP_SETUP.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\EXPLORE.ZIP_SETUP.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\YEKE1204\1204.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\YEKE1204\1204.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\YEKE1204\A.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\YEKE1204\A.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\ABC.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\ABC.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\ABR-1214.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\ABR-1214.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\AC-562.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\AC-562.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\AC-571.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\AC-571.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\ALAB-A.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\ALAB-A.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\ALEX1951.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\AQL\ALEX1951.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\SD789C\APPEND.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50
D:\VIRUSI\SD789C\APPEND.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50 D:\VIRUSI\BW-
1344\APPEND.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:50 D:\VIRUSI\BW-
1344\APPEND.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\KP1250\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\KP1250\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\CBA2464\BOX1.EXE

Chapter 10 Implementing an Intelligent Security System

10 - 7

<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\CBA2464\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\SCTZ1329\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\SCTZ1329\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\OHRD1485\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\OHRD1485\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51 D:\VIRUSI\CAR-
2050\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51 D:\VIRUSI\CAR-
2050\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\TPE13\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\TPE13\BOX1.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\KP1250\BOX10.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\KP1250\BOX10.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\OHRD1485\BOX10.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\OHRD1485\BOX10.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51 D:\VIRUSI\CAR-
2050\BOX10.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51 D:\VIRUSI\CAR-
2050\BOX10.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\EXPLORE.ZIP_SETUP.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\EXPLORE.ZIP_SETUP.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\BRSC2078\F-PROT.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\BRSC2078\F-PROT.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\YEKE1204\G.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\YEKE1204\G.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\YEKE1076\GHOST.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\YEKE1076\GHOST.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\SD801\GOLD.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\SD801\GOLD.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\NOV17768\CONVERT.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:51
D:\VIRUSI\NOV17768\CONVERT.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:52
D:\VIRUSI\FAM\CUSTOMIZ.EXE
<F-Secure Gatekeeper>: Infected File @ P 20.08.2000 16:52
D:\VIRUSI\FAM\CUSTOMIZ.EXE
Scan All Hard Disks when Idle SCANALLH.FPT K 20.08.2000 17:28 OK
Scan All Hard Disks when Idle SCANALLH.FPT K 20.08.2000 17:41 OK
Scan Folder SCANAT.FPT K 20.08.2000 17:43 OK
Scan Folder SCANAT.FPT W 20.08.2000 18:35 2 Warnings
Scan Folder SCANAT.FPT K 20.08.2000 18:42 OK

Figure 10.3.3. Report from F-Secure of type *.LOG on host “virusi”

Scanned at: 20.08.2000 16:48 Virus Alert!
Scanned by: Suzana at virusi
F-Secure Anti-Virus for Windows version 4.09

Scan engines used:
F-PROT version 3.07.1204 (signatures database date 2000-05-30)
AVP version 3.133.2223 (signatures database date 2000-05-30)

Chapter 10 Implementing an Intelligent Security System

10 - 8

Search: Drive D:
Action: Report Only
Targets: File viruses Boot sector viruses
Files: Executables

Results of virus scanning:
Scanned: 1 drive(s), 4447 file(s), 1 boot sector(s)

Time: 1 min 56 sec
Found: 1927 infection(s), 51 suspected infection(s) in 1023 file(s)
Disinfected 0 file(s)

d:\users\suzana\texts\xine-1.zip\tunnel.zip\da1.com
Infection: 'Test.1030' [F-PROT]

d:\users\suzana\texts\xine-1.zip\tunnel.zip\testb.com
Infection: 'Test.1030' [F-PROT]

d:\users\suzana\texts\xine-1.zip\xine-1.000\jupiter.bin
Infection: 'Sailor_Boot.A' image file (exact) [F-PROT]

d:\users\suzana\texts\xine-1.zip\mme.zip\da1.com
Infection: 'Test.1030' [AVP]
.
.
.
.
(long list of detected infections)

Figure 10.3.4.One of reports from F-Secure of type *.FPT on host “virusi”

$$$
$$$$$$$$$$$$$$$$$ Processing started on 2000-Aug-20 12:59 $$$$$$$$$$$$$$$$$

Integrity Master 4.21a Serial # TrialVer Licensed for use for trial
Licensed for 60 day evaluation use
Report: C:\IM_HOME\)(0821.REP Integrity data on C:
Integrity Checking: ON D/T changes Ignored, Add/Del report On
Checking C:\IM_HOME
All directories: Full integrity processing of all files.
Checking:

Name and Signature File Update Update
Status: Type: Extension: Val1: Val2: Size: Date: Time:
------- -------- ---------- ---- ---- ---------- ----------- --------

Current directory:\WINDOWS
Changed File OLD: SYSTEM DAT 8F8D 8F35 3215392 2000-Aug-21 12:48:46

File NEW: SYSTEM DAT B937 E8FA 3215392 2000-Aug-21 12:58:00
Changed File OLD: USER DAT 0662 B7C6 217120 2000-Aug-21 12:43:08

File NEW: USER DAT 7A7E F1F0 217120 2000-Aug-21 12:58:56

Exclude File WIN386 SWP 33554432 2000-Aug-21 12:57:36
Changed File OLD: F-PROTW CFG 82E7 2C0A 4589 2000-Aug-20 22:42:38

File NEW: F-PROTW CFG 82E8 EE88 4589 2000-Aug-21 12:58:08
Warning! The last file encountered would not open. What this usually means
is that some other program has this file open. This is normal if you are
running a multi-tasker such as OS/2, Windows, or a LAN. Otherwise, you may
have disk problems of some type. When you finish, run CHKDSK and any
diagnostics you have in order to make sure your disk is OK.

Changed File OLD: F-PROTW LOG 26D2 11A3 5343 2000-Aug-20 17:43:34
File NEW: F-PROTW LOG D18D D330 6990 2000-Aug-21 12:56:24

Current directory:\WINDOWS\APPLOG
Changed File OLD: APPLOG IND E39F B46E 1859 2000-Aug-21 12:43:56

File NEW: APPLOG IND 409C 1B45 1859 2000-Aug-21 12:58:54
Changed File OLD: WORDPAD LGC 660F 3614 10847 2000-Aug-20 16:43:56

File NEW: WORDPAD LGC 9050 6A90 11364 2000-Aug-21 12:53:44
Added File IM LGC 6113 7132 142 2000-Aug-21 12:58:56

Current directory:\WINDOWS\RECENT
Added File L0K3 LNK 3BAB A56F 284 2000-Aug-21 12:53:38
Deleted File SBROTHER LNK 3521 0479 266 2000-Aug-19 18:54:12

Chapter 10 Implementing an Intelligent Security System

10 - 9

Current directory:\IM_HOME
....Changed File OLD: IM PIF ECC5 61CF 545 1998-Dec-31 4:21:00....
.... File NEW: IM PIF EE32 0A70 995 2000-Aug-21 12:53:06....

Current directory:\ALATI
Jerusalem virus detected in file: PS.EXE
******** E X T R E M E D A N G E R ! ********
Signs of Jerusalem virus detected in file: PS.EXE
This virus will infect:
.COM files, .EXE files, overlay files
This virus is known to cause file damage.
Once executed, this virus remains resident in memory and controls your PC.
It will prevent your PC from working correctly, or may halt the PC.

*** IF YOU ARE NOT SURE THAT YOU BOOTED FROM A KNOWN GOOD COPY OF ***
*** DOS ON A WRITE PROTECTED DISKETTE, POWER OFF, AND RE-BOOT NOW! ***

Steps to remove the virus:

o Make sure you complete an "Entire system" check to detect any other infected
programs. Also note files which may have been damaged by the virus.

o Delete all infected or damaged files and reload them.
o Rerun an "Entire system" check to verify no infected files remain.
o Check any other disk(ette)s which may have been infected

Could this be a false alarm? (Not really a virus)
If IM has checked this file before or if more than one file was
found infected, then it is most likely a REAL VIRUS!

If this is the first time IM has checked this file and if only one file is
found infected after checking your entire disk, then it may be a false
alarm. Although it is unlikely, it IS possible that a legitimate program
contains code that matches a virus. IF YOU THINK YOU HAVE A FALSE ALARM,
PLEASE CONTACT US (email to support@stiller.com).

Some anti-virus programs (e.g., Vsafe, Vwatch) contain unencrypted virus
fragments which IM may detect in the files or in memory. It's usually safe
to assume these programs are not infected. There's unfortunately not much we
can do about anti-virus programs that do this.

****Added File PS EXE 8B6C 3BCD 59232 1985-Nov-13 13:48:36****
Processing completed successfully - Virus detected!

Any lines beginning and ending with these characters have special meaning:

**** file infected by a virus
>>>> File has been corrupted (file time and date stamps have NOT changed, yet

the file itself has changed) or is otherwise suspicious (e.g., bad date)
.... A change detected in an executable file (a program or overlay)

Checking complete 2000-Aug-21 13:02 on disk C: (221 directories checked)
--

3935 files processed: - System sectors:
-

1 contain signs of a known virus - Boot: Not checked
0 are suspicious - Partition: Not checked
1 corrupted -
7 changed -----------------------------------
3 added (directories and files) - PC Config.: Not checked
1 deleted (directories and files) - System memory: OK

3934 read and checked - CMOS memory: Not checked
-

--
File and system sector statistics are reset after each display.
NA = Not applicable (this type of system sector is not on this disk)
Integrity data is usually NOT updated if viruses or hardware errors occur.
Files with open or read errors are also counted as corrupted.

Figure 10.3.5.One of reports from Integrity Master of type *.REP on host “virusi”

Chapter 10 Implementing an Intelligent Security System

10 - 10

As it can be seen from previous examples, some of reports can be very verbose, which
might be good for individual use, but is an obstacle for automated processing of
reports. Therefore, first step was to build corresponding filters for every type of
reports, which will convert so different formats into standardized formats, that can be
used in further processing. It took a lot of time to design filters, mostly because of
making decisions what information to reject and what to leave. Once, when it was
decided, it was not so difficult to write appropriate Tcl code for filters, which can be
seen at Appendix C. The coding of filter_3 for the reports from Integrity Master was
the most difficult because of unusual date-time format in report and searching for
appropriate pattern recognition to extract important data.

The results of filtering were stored in directories /filters_glavni and /filters_virusi,
respectively. Some of resulting files are presented in following pictures. It can be seen
that first three fields carry information about host, type of event and type of agent.
Following records give type of action, time stamp and type of event. Their format is
adapted to be easier processed by Tcl.

GLAVNI VIR SCANNER { Scan All Hard Disks when Idle } {200008201427 } {Scan Aborted }
GLAVNI VIR SCANNER { Scan All Hard Disks when Idle } {200008201521 } {Virus Alert: }
GLAVNI VIR SCANNER { Scan Folder } {200008201614 } {OK }
GLAVNI VIR SCANNER { Scan Folder } {200008201615 } {OK }

Figure 10.3.6. Output from filter_1 for reports of type *.LOG for host “glavni”

GLAVNI VIR SCANNER { Report Only } {200008201521 } {Infected=21 Suspected=0 }

Figure 10.3.7. Output from filter_2 for reports of type *.FPT for host “glavni”

VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201413 } {Scan Aborted }
VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201418 } {Virus Alert: }
VIRUSI VIR SCANNER { Scan A: } {200008201618 } {OK }
VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201623 } {OK }
VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201648 } {Virus Alert: }
VIRUSI VIR SCANNER { F-SecureGatekeeper } {200008201652 } {54 Infection Stopped }
VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201728 } {OK }
VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201741 } {OK }
VIRUSI VIR SCANNER { Scan Folder } {200008201743 } {OK }
VIRUSI VIR SCANNER { Scan Folder } {200008201835 } {2 Warnings }
VIRUSI VIR SCANNER { Scan Folder } {200008201842 } {OK }

Figure 10.3.8. Output from filter_1 for reports of type *.LOG for host “virusi”

VIRUSI VIR SCANNER { Report Only } {200008201648 } {Massive Infection }

Figure 10.3.9. Output from filter_2 for reports of type *.FPT for host “virusi”

VIRUSI VIR INTCHCK { Checking } {200008201259 } {1 Virus Alert }
VIRUSI VIR INTCHCK { Checking } {200008201259 } {1 Change Detected }
VIRUSI VIR INTCHCK { Checking } {200008201259 } {0 File Corrupted }
VIRUSI VIR INTCHCK { Checking } {200008201259 } {Boot: Not checked }
VIRUSI VIR INTCHCK { Checking } {200008201259 } {Partition: Not checked }
VIRUSI VIR INTCHCK { Checking } {200008201259 } {PC Config.: Not checked }
VIRUSI VIR INTCHCK { Checking } {200008201259 } {System memory: OK }
VIRUSI VIR INTCHCK { Checking } {200008201259 } {CMOS memory: Not checked }

Figure 10.3.10. Output from filter_3 for reports of type *.REP for host “virusi”

The main task of observing transceivers was to collect outputs from filters, sort them
by time sequence and according to that condition concatenate records from two

Chapter 10 Implementing an Intelligent Security System

10 - 11

different filters for scanner, giving that way the complete presentation of certain
event. The reports from integrity checker were simply added to the other reports.

An additional record was added to starting sequence, i.e. the “weight” of event
according to scanning or integrity checking results. The word “OK” was added if
result from scanner was “OK” or “Scan up to date” , also if result from integrity
checker was “BOOT: OK”, “Partition: OK”, “PC. Config: OK”, “System Memory :
OK” or “CMOS Memory: OK”. The word “Check” was added if result from scanner
was “Scan Aborted” or “Infection Stopped”. The word “Warning” was added if result
from scanner was “Warnings”, “Virus Alert” or “Scanner out of date”. The same
word was added if results from integrity checker were “Virus Alert”, “File
Corrupted”, “Change Detected”, “BOOT: Not checked”, “Partition: Not Checked”,
“PC Config.: Not checked”, “System Memory: Not checked” or “CMOS Memory:
Not checked”. This additional record was added to make the task of controller easier
in the next level of processing.

The Tcl code for corresponding transceivers is given in Appendix C. The outputs
from transceiver were placed to directories /transceiver_obs_glavni and
/transceiver_obs_virusi, respectively. The results are presented on following
pictures.

GLAVNI VIR SCANNER Check { 200008201427 } { {Scan All Hard Disks when Idle Scan
Aborted } }
GLAVNI VIR SCANNER Warning { 200008201521 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Infected=21 Suspected=0 } }
GLAVNI VIR SCANNER OK { 200008201614 } { {Scan Folder OK } }
GLAVNI VIR SCANNER OK { 200008201615 } { {Scan Folder OK } }

Figure 10.3.11. Output from observing transceiver for host “glavni”

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Virus Alert } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Change Detected } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {0 File Corrupted } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Boot: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Partition: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {PC Config.: Not checked } }
VIRUSI VIR INTCHCK OK { 200008201259 } { Checking {System memory: OK } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {CMOS memory: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {0 Virus Alert } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 Change Detected } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 File Corrupted } }
VIRUSI VIR INTCHCK OK { 200008201637 } { Checking {Boot: OK } }
VIRUSI VIR INTCHCK OK { 200008201637 } { Checking {Partition: OK } }
VIRUSI VIR INTCHCK OK { 200008201637 } { Checking {PC Config.: OK } }
VIRUSI VIR INTCHCK OK { 200008201637 } { Checking {System memory: OK } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {CMOS memory: Not checked } }
VIRUSI VIR SCANNER Check { 200008201413 } { {Scan All Hard Disks when Idle Scan
Aborted } }
VIRUSI VIR SCANNER Warning { 200008201418 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Massive Infection } }
VIRUSI VIR SCANNER OK { 200008201618 } { {Scan A: OK } }
VIRUSI VIR SCANNER OK { 200008201623 } { {Scan All Hard Disks when Idle OK } }
VIRUSI VIR SCANNER Warning { 200008201648 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Massive Infection } }
VIRUSI VIR SCANNER Check { 200008201652 } { {F-SecureGatekeeper 54 Infection Stopped }
}
VIRUSI VIR SCANNER OK { 200008201728 } { {Scan All Hard Disks when Idle OK } }
VIRUSI VIR SCANNER OK { 200008201741 } { {Scan All Hard Disks when Idle OK } }
VIRUSI VIR SCANNER OK { 200008201743 } { {Scan Folder OK } }
VIRUSI VIR SCANNER Warning { 200008201835 } { {Scan Folder 2 Warnings } {Report Only
Infected=0 Suspected=2 } }

Chapter 10 Implementing an Intelligent Security System

10 - 12

VIRUSI VIR SCANNER OK { 200008201842 } { {Scan Folder OK } }

Figure 10.3.12. Output from observing transceiver for host “virusi”

10.4. Implementation of Knowledge Acquisition Elements

The elements of knowledge acquisition subsystem are controllers for different types
of attacks, coordinators and dispatcher. The controllers were developed in the way as
they physically reside on corresponding host, together with observing elements.
Therefore, two controllers were designed, one for host “glavni” and the other for host
“virusi”. The main function of a controller is to select the events for which it is
designated by priorities. Priorities were given in some way by transceiver in previous
step adding the words “Warning”, “Check” or “OK” after the control records in the
reports. So, the main task of controller was to check first if there is a word “Warning”
on the specific place in the line and to extract all those lines. If there would be no
word “Warning” it would extract all lines having “Check” on specific place in line. If
there would be even no word “Check” it would proceed “OK” lines to the next level.

The Tcl code for controller can be seen in Appendix C. The outputs of controllers
were placed to directories /controller_obs_glavni and /controller_obs_virusi,
respectively. The examples of outputs from controllers for previous reports from
transceivers are presented on following figures.

GLAVNI VIR SCANNER Warning { 200008201521 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Infected=21 Suspected=0 } }

Figure 10.4.1. Output from controller for event VIR(us) for the host “glavni”

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Virus Alert } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Change Detected } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {CMOS memory: Not checked } }
VIRUSI VIR SCANNER Warning { 200008201418 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Massive Infection } }
VIRUSI VIR SCANNER Warning { 200008201648 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Massive Infection } }
VIRUSI VIR SCANNER Warning { 200008201835 } { {Scan Folder 2 Warnings } {Report Only
Infected=0 Suspected=2 } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Boot: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Partition: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {PC Config.: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {CMOS memory: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 Change Detected } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 File Corrupted } }

Figure 10.4.2. Output from controller for event VIR(us) for the host “virusi”

The main task of coordinator is to merge reports from controllers residing on different
hosts for given type of event (in this case it is event “virus”). Its task is also to sort the
reports by importance of hosts. For example, the host “glavni” was of greater
importance than host “virusi” in this case, because author of this thesis keeps her main
software on that host (“glavni” is the Croatian word for main) and host “virusi” is
intended, among other things, for experiments with viruses, so infection on that host is
not so “serious”. (The side – effect of this work was that, although host “glavni” was
very carefully infected, scanner has found an unnoticed infection with LoveLetter

Chapter 10 Implementing an Intelligent Security System

10 - 13

worm in zipped mail attachment, for which author is still not sure how it was
received).

The Tcl code for the coordinator for event VIR(us) is given in Appendix C. The
resulting report is placed to the directory /coordinator_vir_in and it is presented on
Figure 10.4.2.

GLAVNI VIR SCANNER Warning { 200008201521 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Infected=21 Suspected=0 } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Virus Alert } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Change Detected } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {CMOS memory: Not checked } }
VIRUSI VIR SCANNER Warning { 200008201418 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Massive Infection } }
VIRUSI VIR SCANNER Warning { 200008201648 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Massive Infection } }
VIRUSI VIR SCANNER Warning { 200008201835 } { {Scan Folder 2 Warnings } {Report Only
Infected=0 Suspected=2 } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Boot: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Partition: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {PC Config.: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {CMOS memory: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 Change Detected } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 File Corrupted } }

Figure 10.4.3. Output from coordinator for event VIR(us)

The main task of dispatcher is to supervise coordinators for different events, collect
reports from them and sorts them by importance. As in this case was no other
coordinators except the one for event “virus”, dispatcher only has proceeded this
report further. The Tcl code for dispatcher is given in Appendix C. The output is
placed into directory /dispatcher_ in and it is shown on Figure 10.4.4.

GLAVNI VIR SCANNER Warning { 200008201521 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Infected=21 Suspected=0 } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Virus Alert } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Change Detected } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {CMOS memory: Not checked } }
VIRUSI VIR SCANNER Warning { 200008201418 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Massive Infection } }
VIRUSI VIR SCANNER Warning { 200008201648 } { {Scan All Hard Disks when Idle Virus
Alert: } {Report Only Massive Infection } }
VIRUSI VIR SCANNER Warning { 200008201835 } { {Scan Folder 2 Warnings } {Report Only
Infected=0 Suspected=2 } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Boot: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Partition: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {PC Config.: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {CMOS memory: Not checked } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 Change Detected } }
VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 File Corrupted } }

Figure 10.4.4. Output from dispatcher

10.5. Implementation of Organization Level

The elements of organization level are knowledge database, unit of inference rules,
problem description unit, problem status unit, reasoning unit and explanation unit.
The main communication between the particular units was shown on Figure 8.3.3. and
Figure 8.3.4. In this prototype the communication between units was somewhat
simplified as it is shown on Figure 10.5.1.

Chapter 10 Implementing an Intelligent Security System

10 - 14

KNOWLEDGE
DATABASE

INFERENCE
RULES

PROBLEM
DESCRIPTION

PROBLEM
STATUSDISPATCHER REASONING

UNIT

COORDINATION
 LEVEL

ORGANIZATION LEVEL ORGANIZATION
LEVEL

Figure 10.5.1. Scheme of communication on organization level

The report from dispatcher is transferred from /dispatcher_in directory to
/problem_desription directory for further processing by simple Tcl script
problemdes.tcl.

10.5.1. Knowledge database

Knowledge database of known regular and irregular events for event "virus" is stored
in directory /etc/knowledge_database. Its records show all possible outputs from
scanner and integrity checker, together with associated risk and priority. Risk
abbreviations are VLR = Very Low Risk, LR = Low Risk, MR = Moderate Risk, HR
= High Risk, VHR = Very High Risk. Priorities are numbered from 1 to 5, so that 1
corresponds to very high risk and 5 to very low risk. The association of risk and
priorities to particular actions was intended to be used in further processing, but it is
not of practical use at this moment and presents redundant information. The data
format can be seen on Figure 10.5.1.1. which presents code listing of
knowdatabase.tcl

#COMENTS
#Types of records:
#Action,Event,Action_on_Event,Results,Risk,Priority
#Examples: Action - Scan A:, Event: Warning,
#Action_on_Event: Report Only, Results: Massive Infection,
#Risk: VHR, Priority: 1

##data format
##ARRAY (Action,Event,Action_on_Event,Results)=(Risk,Priority)

set i {{Scan A:},{Scanner up to date},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Scan A:},{Scanner out of date},{},{}}; set VIRKNOW($i) {HR 2}

Chapter 10 Implementing an Intelligent Security System

10 - 15

set i {{Scan A:},{OK},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Scan A:},{Scan Aborted},{},{}}; set VIRKNOW($i) {LR 4}
set i {{Scan A:},{Warnings},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR
1}
set i {{Scan A:},{Warnings},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan A:},{Warnings},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan A:},{Warnings},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}
set i {{Scan A:},{Warnings},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan A:},{Warnings},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan A:},{Warnings},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}
set i {{Scan A:},{Warnings},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan A:},{Warnings},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan A:},{Warnings},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}
set i {{Scan A:},{Warnings},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan A:},{Warnings},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan A:},{Virus Alert},{Report Only},{Massive Infection}}; set VIRKNOW($i)
{VHR 1}
set i {{Scan A:},{Virus Alert},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan A:},{Virus Alert},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan A:},{Virus Alert},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR
3}
set i {{Scan A:},{Virus Alert},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan A:},{Virus Alert},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan A:},{Virus Alert},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}
set i {{Scan A:},{Virus Alert},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan A:},{Virus Alert},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan A:},{Virus Alert},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}
set i {{Scan A:},{Virus Alert},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan A:},{Virus Alert},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Scanner up to date},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Scan B:},{Scanner out of date},{},{}}; set VIRKNOW($i) {HR 2}
set i {{Scan B:},{OK},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Scan B:},{Scan Aborted},{},{}}; set VIRKNOW($i) {LR 4}
set i {{Scan B:},{Warnings},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR
1}
set i {{Scan B:},{Warnings},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan B:},{Warnings},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan B:},{Warnings},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Warnings},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Warnings},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Warnings},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}
set i {{Scan B:},{Warnings},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan B:},{Warnings},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan B:},{Warnings},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Warnings},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Warnings},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Virus Alert},{Report Only},{Massive Infection}}; set VIRKNOW($i)
{VHR 1}
set i {{Scan B:},{Virus Alert},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan B:},{Virus Alert},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan B:},{Virus Alert},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR
3}
set i {{Scan B:},{Virus Alert},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Virus Alert},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Virus Alert},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}
set i {{Scan B:},{Virus Alert},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan B:},{Virus Alert},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan B:},{Virus Alert},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Virus Alert},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan B:},{Virus Alert},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Folder},{Scanner up to date},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Scan Folder},{Scanner out of date},{},{}}; set VIRKNOW($i) {HR 2}
set i {{Scan Folder},{OK},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Scan Folder},{Scan Aborted},{},{}}; set VIRKNOW($i) {LR 4}
set i {{Scan Folder},{Warnings},{Report Only},{Massive Infection}}; set VIRKNOW($i)
{VHR 1}
set i {{Scan Folder},{Warnings},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan Folder},{Warnings},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan Folder},{Warnings},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR
3}
set i {{Scan Folder},{Warnings},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Folder},{Warnings},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Folder},{Warnings},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}
set i {{Scan Folder},{Warnings},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan Folder},{Warnings},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan Folder},{Warnings},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}
set i {{Scan Folder},{Warnings},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

Chapter 10 Implementing an Intelligent Security System

10 - 16

set i {{Scan Folder},{Warnings},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Folder},{Virus Alert},{Report Only},{Massive Infection}}; set VIRKNOW($i)
{VHR 1}
set i {{Scan Folder},{Virus Alert},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan Folder},{Virus Alert},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan Folder},{Virus Alert},{Disinfect},{Massive Infection}}; set VIRKNOW($i)
{MR 3}
set i {{Scan Folder},{Virus Alert},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Folder},{Virus Alert},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Folder},{Virus Alert},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR
1}
set i {{Scan Folder},{Virus Alert},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan Folder},{Virus Alert},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan Folder},{Virus Alert},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR
3}
set i {{Scan Folder},{Virus Alert},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Folder},{Virus Alert},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Scanner up to date},{},{}}; set VIRKNOW($i)
{VLR 5}
set i {{Scan All Hard Disks when Idle},{Scanner out of date},{},{}}; set VIRKNOW($i)
{HR 2}
set i {{Scan All Hard Disks when Idle},{OK},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Scan All Hard Disks when Idle},{Scan Aborted},{},{}}; set VIRKNOW($i) {LR 4}
set i {{Scan All Hard Disks when Idle},{Warnings},{Report Only},{Massive Infection}};
set VIRKNOW($i) {VHR 1}
set i {{Scan All Hard Disks when Idle},{Warnings},{Report Only},{Infected}}; set
VIRKNOW($i) {HR 2}
set i {{Scan All Hard Disks when Idle},{Warnings},{Report Only},{Suspected}}; set
VIRKNOW($i) {VHR 1}
set i {{Scan All Hard Disks when Idle},{Warnings},{Disinfect},{Massive Infection}};
set VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Warnings},{Disinfect},{Infected}}; set
VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Warnings},{Disinfect},{Suspected}}; set
VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Warnings},{Rename},{Massive Infection}}; set
VIRKNOW($i) {VHR 1}
set i {{Scan All Hard Disks when Idle},{Warnings},{Rename},{Infected}}; set
VIRKNOW($i) {HR 2}
set i {{Scan All Hard Disks when Idle},{Warnings},{Rename},{Suspected}}; set
VIRKNOW($i) {VHR 1}
set i {{Scan All Hard Disks when Idle},{Warnings},{Delete},{Massive Infection}}; set
VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Warnings},{Delete},{Infected}}; set
VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Warnings},{Delete},{Suspected}}; set
VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Report Only},{Massive
Infection}}; set VIRKNOW($i) {VHR 1}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Report Only},{Infected}}; set
VIRKNOW($i) {HR 2}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Report Only},{Suspected}}; set
VIRKNOW($i) {VHR 1}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Disinfect},{Massive Infection}};
set VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Disinfect},{Infected}}; set
VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Disinfect},{Suspected}}; set
VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Rename},{Massive Infection}};
set VIRKNOW($i) {VHR 1}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Rename},{Infected}}; set
VIRKNOW($i) {HR 2}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Rename},{Suspected}}; set
VIRKNOW($i) {VHR 1}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Delete},{Massive Infection}};
set VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Delete},{Infected}}; set
VIRKNOW($i) {MR 3}
set i {{Scan All Hard Disks when Idle},{Virus Alert},{Delete},{Suspected}}; set
VIRKNOW($i) {MR 3}
set i {{Scan Network},{Scanner up to date},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Scan Network},{Scanner out of date},{},{}}; set VIRKNOW($i) {HR 2}
set i {{Scan Network},{OK},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Scan Network},{Scan Aborted},{},{}}; set VIRKNOW($i) {LR 4}
set i {{Scan Network},{Warnings},{Report Only},{Massive Infection}}; set VIRKNOW($i)
{VHR 1}

Chapter 10 Implementing an Intelligent Security System

10 - 17

set i {{Scan Network},{Warnings},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan Network},{Warnings},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan Network},{Warnings},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR
3}
set i {{Scan Network},{Warnings},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Network},{Warnings},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Network},{Warnings},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR
1}
set i {{Scan Network},{Warnings},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan Network},{Warnings},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan Network},{Warnings},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}
set i {{Scan Network},{Warnings},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Network},{Warnings},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Network},{Virus Alert},{Report Only},{Massive Infection}}; set
VIRKNOW($i) {VHR 1}
set i {{Scan Network},{Virus Alert},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan Network},{Virus Alert},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR
1}
set i {{Scan Network},{Virus Alert},{Disinfect},{Massive Infection}}; set VIRKNOW($i)
{MR 3}
set i {{Scan Network},{Virus Alert},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Network},{Virus Alert},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Network},{Virus Alert},{Rename},{Massive Infection}}; set VIRKNOW($i)
{VHR 1}
set i {{Scan Network},{Virus Alert},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}
set i {{Scan Network},{Virus Alert},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}
set i {{Scan Network},{Virus Alert},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR
3}
set i {{Scan Network},{Virus Alert},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}
set i {{Scan Network},{Virus Alert},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}
set i {{F-Secure Gatekeeper},{Infection Stopped},{},{}}; set VIRKNOW($i) {MR 3}
set i {{Checking},{Virus Alert},{},{}}; set VIRKNOW($i) {HR 2}
set i {{Checking},{Change Detected},{},{}}; set VIRKNOW($i) {HR 2}
set i {{Checking},{File Corrupted},{},{}}; set VIRKNOW($i) {MR 3}
set i {{Checking},{Boot: OK},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Checking},{Partition: OK},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Checking},{PC Config.: OK},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Checking},{CMOS Memory: OK},{},{}}; set VIRKNOW($i) {VLR 5}
set i {{Checking},{Boot: Not Checked},{},{}}; set VIRKNOW($i) {MR 3}
set i {{Checking},{Partition: Not Checked},{},{}}; set VIRKNOW($i) {MR 3}
set i {{Checking},{PC Config.: Not Checked},{},{}}; set VIRKNOW($i) {MR 3}
set i {{Checking},{CMOS Memory: Not Checked},{},{}}; set VIRKNOW($i) {MR 3}

#end

Figure 10.5.1.1. Knowledge database for event "virus"

The report from /description_unit is compared with database. Tcl code for this
procedure is given in Appendix C. If the result of comparison is new event, not
recorded in database, it is written to virknow.tcl, database of newly recorded events,
in the same directory /etc/knowledge_database. At this moment of development the
recording of new events serves only as an off-line additional memory. It does not
affect further processing yet, but it is intended to be more actively used in the future.

10.5.2. Inference Rules

The unit of inference rules contains a priori built rules for handling various levels of
scanning and integrity checking risk. According to these rules the particular plan of
actions is chosen. There are basically two fuzzy experts, one for risk evaluation and
the other for plan calculation. They had to be separated because of fuzzy engine
implementation. It was impossible to have same variables on the both sides of the
rules, so there are almost same rules for risk evaluation and an extended set of rules
for plan calculation.

Chapter 10 Implementing an Intelligent Security System

10 - 18

The code is organized in the way that main program inference_main.tcl, which is
placed in /etc/inference_rules reads the report from /description_unit, calls
procedures lib_fuz.tcl, code_inference.tcl and lib_pinf.tcl from directory /lib to
perform risk evaluation and plan calculation on the basis of given report, and then
places the result in directory /problem_status. The Tcl code of inference_main.tcl is
presented on Figure 10.5.2.1.

##COMENTS

MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "VIR_INFERENCE"
set MYHOST "*"
set MYREPOSITORY "../../problem_description"
set MYCHECK "../../check/${MYNAME}.chk"

set MYOUT "../../problem_status"
set MY_IN_ENTITY "*"
set MY_EXT "TXT"

set LASTCHECK 0
set cCONTROL "" ;# current control information

###

set PDIR "../../lib"
set KDIR "."

calls needed procedures

source $PDIR/lib_names.tcl
source $PDIR/lib_fuz.tcl
source $PDIR/code_inference.tcl
source $PDIR/lib_pinf.tcl

set DEBUG 0

###

proc MAIN { } {

global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]
foreach i $inrep {

set cCONTROL [getControl $i]
set rez [Process8 $i]

update_Check $i
}

}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure 10.5.2.2. Code of inference_main.tcl

Chapter 10 Implementing an Intelligent Security System

10 - 19

Procedure lib_fuz.tcl is Tcl implementation by D.Delija [8] of basic functions for
operations with fuzzy sets, such as IS (for truth membership), AND, OR, NOT (fuzzy
logic operations), IF (for inference) and DEFUZZ (defuzzification) based on
corresponding functions from fuzzy code library developed in C++ by E.Cox [6]. This
approach allows easier debugging and better adjustments in process of developing
code. Figure 10.5.2.3. shows this procedure.
##

set DEBUG 0 ;# debug control variable

##

proc POSITIVE { x } {
if { $x > 0 } { return 1 }
return 0

}
proc NEGATIVE { x } {

if { $x < 0 } { return 1 }
return 0

}

##
#max and min for utility

proc max {x args} {
foreach a $args {

if { $x > $a } { set a $x }
}
return $x

}

proc min {x args} {
foreach a $args {

if { $x < $a } { set a $x }
}
return $x

}

##

proc EQUAL { x y } {
if { $x == $y } { return 1 }
return 0

}

##
definition of functions IS, OR, AND, NOT
##

proc IS { x st } {

return [lindex [FzyGetMembership $st $x] 0]
}

proc OR { args } {
set cmd "FzyCompOR ZADEHOR 0 $args"
return [eval $cmd]

}

proc AND { args } {
set cmd "FzyCompAND ZADEHAND 1 $args"
return [eval $cmd]

}

proc NOT { x } {
return [FzyCompNOT ZADEHNOT 0 $x]

}

Chapter 10 Implementing an Intelligent Security System

10 - 20

##
rule evaluator
##

proc IF { conc T args } {
global DEBUG

if { $DEBUG > 0 } {

catch {
puts "$conc THEN $args"

}
flush stdout

}

upvar 1 _RCNT i ; #rule counter
upvar 1 _RULE R ; #rule array
upvar 1 _RALFA AA ; #alfa for rule

if [catch { incr i}] { set i 0 }

if [catch { eval $conc } a] { set a $conc }

foreach r $args {
#puts $r

set var [lindex $r 0]
set set [lindex $r 1]
set R($i,$var) "$set"
set AA($i,$var) "$a"

}
set A($i) "$a"

return $a
}

##
do the defuzzification for variable in model
##

proc DEFUZZ { var } {
global DEBUG

if { $DEBUG > 1 } {

flush stdout
}

upvar 1 _RCNT i ; #rule counter
upvar 1 _RULE R ; #rule array
upvar 1 _RALFA AA ; #alfa for rule

default methods

set implM MINMAX
set corrM MINIMUM
set defzM CENTROID

#for each rule containg VAR
#do the calculation
set rez {}

foreach x [array names R *,${var}] {

if { $DEBUG > 1 } {

puts "Index=$x rule=$R($x) alfa=$AA($x)"
flush stdout

}

new set,get by minimum

set t [FzyCopySet $R($x)]

if { $rez == {} } {

Chapter 10 Implementing an Intelligent Security System

10 - 21

set rez $t
} else {

#do the proposition and remove set

FzyProposition $t $rez $implM $corrM $AA($x)
FzyDeleteSet $t

}

if { $DEBUG > 1 } {
puts "Applied to $t Index=$x rule=$R($x) alfa=$AA($x)"
FzyDrawSet $rez

flush stdout

##gets stdin line
}

}

if { $DEBUG > 1 } {
flush stdout

}

if [catch {FzyDefuzzify $rez $defzM } r] { set r "0 0" }

if { $DEBUG > 1 } {
puts "DRAW"
FzyDrawSet $rez
puts "Result: $r"

flush stdout
}

catch { FzyDeleteSet $rez }
return $r

}

##

Figure 10.5.2.3. Code of lib_fuz.tcl

Next procedure code_inference.tcl initializes global variables for inference rules and
sets them to zero by default. These variables are crisp, i.e. their values may be 0 or 1,
which means that certain event has happened or not. The report from
/problem_description is parsed line by line. Filters are set to detect if related action
is present in line. If it is present its global variable is set to 1. The Tcl code for this
procedure is given on Figure 10.5.2.4.

#initializes global variables

proc GLOBALINIT { } {

global Scan_A
global Scan_B
global Scan_Folder
global Scan_All
global Scan_Net
global Checking
global F_SecureGatekeeper

global Boot_OK
global Boot_NotChecked
global Partition_OK
global Partition_NotChecked
global PCConfig_OK
global CMOSMemory_OK
global CMOSMemory_NotChecked
global Scan_UpDate
global Scan_OffDate
global Scan_OK
global Scan_Aborted

Chapter 10 Implementing an Intelligent Security System

10 - 22

global ChangeDetected
global FileCorrupted
global InfectionStopped
global PCConfig_NotChecked
global Virus_Alert
global Warnings

global ActDisinfect
global ActDelete
global ActReportOnly
global ActRename

global ResMassiveInfection
global ResInfected
global ResSuspected

#sets to zero

set Scan_A 0
set Scan_B 0
set Scan_Folder 0
set Scan_All 0
set Scan_Net 0
set Checking 0
set F_SecureGatekeeper 0

set Boot_OK 0
set Boot_NotChecked 0
set Partition_OK 0
set Partition_NotChecked 0
set PCConfig_OK 0
set CMOSMemory_OK 0
set CMOSMemory_NotChecked 0
set Scan_UpDate 0
set Scan_OffDate 0
set Scan_OK 0
set Scan_Aborted 0
set ChangeDetected 0
set FileCorrupted 0
set InfectionStopped 0
set PCConfig_NotChecked 0
set Virus_Alert 0
set Warnings 0

set ActDisinfect 0
set ActDelete 0
set ActReportOnly 0
set ActRename 0

set ResMassiveInfection 0
set ResInfected 0
set ResSuspected 0

}

##
#Sets the filter related to global variables.
#Idea is that each global variable set on 1 presents that related action is
#detected in line, line is scanned by ordinary globbing.
#It is separated into proc and use set xx syntax instead of array set
#because of progressive elements removing as action is detected in line.
#if FILTER(X) ~ LINE then set X 1
##

proc SETFILTER { } {

global FILTER

#global array with filter fields, variable name is used as index

set FILTER(Scan_A) { Scan*A: }
set FILTER(Scan_B) { Scan*B: }
set FILTER(Scan_Folder) { Scan*Folder }
set FILTER(Scan_All) { Scan*All }
set FILTER(Scan_Net) { Scan*Net }

Chapter 10 Implementing an Intelligent Security System

10 - 23

set FILTER(Checking) { Checking }
set FILTER(F_SecureGatekeeper) { F*SecureGatekeeper }
set FILTER(Boot_OK) { Boot*OK }
set FILTER(Boot_NotChecked) { Boot*NotChecked }
set FILTER(Partition_OK) { Partition*OK }
set FILTER(Partition_NotChecked) { Partition*Not*Checked }
set FILTER(PCConfig_OK) { PC*Config*OK }
set FILTER(CMOSMemory_OK) { CMOS*Memory*OK }
set FILTER(CMOSMemory_NotChecked) { CMOSMemory_Not*Checked }
set FILTER(Scan_UpDate) { Scan*Up*Date }
set FILTER(Scan_OffDate) { Scan*Off*Date }
set FILTER(Scan_OK) { Scan*OK }
set FILTER(Scan_Aborted) { Scan*Aborted }
set FILTER(ChangeDetected) { Change*Detected }
set FILTER(FileCorrupted) { File*Corrupted }
set FILTER(InfectionStopped) { Infection*Stopped }
set FILTER(PCConfig_NotChecked) { PC*Config*Not*Checked }
set FILTER(Virus_Alert) { Virus*Alert }
set FILTER(Warnings) { Warnings }
set FILTER(ActDisinfect) { Disinfect }
set FILTER(ActDelete) { Delete }
set FILTER(ActReportOnly) { Report*Only }
set FILTER(ActRename) { Rename }
set FILTER(ResMassiveInfection) { Massive*Infection }
set FILTER(ResInfected) { Infected }
set FILTER(ResSuspected) { Suspected }

}

#Tests the line from message if there is action
#if FILTER(X) ~ LINE then set X 1

proc TESTVAR { line } {

global FILTER

#test for each global variable not yet set

foreach f [array names FILTER] {

set fl [string trim $FILTER($f)]

set FL "*$fl*" ;#this is patern
if { [lsearch $line $FL] > -1} {

set CMD "set $f 1"
uplevel #0 $CMD ;#execute on top level
unset FILTER($f) ;#remove detected global variable, return
return

}
}

}

proc Process8 { fl } {

global MYOUT HOST MYNAME
global cCONTROL

GLOBALINIT ;# sets global variables
SETFILTER ;# sets filters

set f [open $fl r]
while { [gets $f line] >=0 } {

set line [string trim [lrange $line 5 end]]
TESTVAR $line ;# each line check actions in it ...

}
close $f

output part, after processing rules in lib_pinf.tcl it gives calculated
plan out together with corresponding risks

Chapter 10 Implementing an Intelligent Security System

10 - 24

set p [GENERAL_RISK] ;# get the Scanning_Risk and IntChecking_Risk
set Sx [lindex $p 0] ;# first is result of Scanning_Risk
set Ix [lindex $p 1] ;# second is result of IntChecking_Risk

set r [expr round([GENERAL_PLAN $Sx $Ix])] ;# get the plan

set fname "${MYOUT}/[doFILEMASK VIR [doTIMESTAMP] $HOST $MYNAME TXT]"
set f [open $fname w]
puts $f "$cCONTROL \{ [doTIMESTAMP] \} \{ $r $Sx $Ix \}"
close $f

return $r

}

#for debug

proc WRITEGLOBAL { } {

global Scan_A
global Scan_B
global Scan_Folder
global Scan_All
global Scan_Net
global Checking
global F_SecureGatekeeper

global Boot_OK
global Boot_NotChecked
global Partition_OK
global Partition_NotChecked
global PCConfig_OK
global CMOSMemory_OK
global CMOSMemory_NotChecked
global Scan_UpDate
global Scan_OffDate
global Scan_OK
global Scan_Aborted
global ChangeDetected
global FileCorrupted
global InfectionStopped
global PCConfig_NotChecked
global Virus_Alert
global Warnings

global ActDisinfect
global ActDelete
global ActReportOnly
global ActRename

global ResMassiveInfection
global ResInfected
global ResSuspected

global FILTER

set FILTER(Scan_A) { Scan*A: }
set FILTER(Scan_B) { Scan*B: }
set FILTER(Scan_Folder) { Scan_Folder }
set FILTER(Scan_All) { Scan_All }
set FILTER(Scan_Net) { Scan_Net }
set FILTER(Checking) { Checking }
set FILTER(F_SecureGatekeeper) { F_SecureGatekeeper }
set FILTER(Boot_OK) { Boot_OK }
set FILTER(Boot_NotChecked) { Boot_NotChecked }
set FILTER(Partition_OK) { Partition_OK }
set FILTER(Partition_NotChecked) { Partition_NotChecked }
set FILTER(PCConfig_OK) { PCConfig_OK }
set FILTER(CMOSMemory_OK) { CMOSMemory_OK }
set FILTER(CMOSMemory_NotChecked) { CMOSMemory_NotChecked }
set FILTER(Scan_UpDate) { Scan_UpDate }
set FILTER(Scan_OffDate) { Scan_OffDate }
set FILTER(Scan_OK) { Scan_OK }
set FILTER(Scan_Aborted) { Scan_Aborted }
set FILTER(ChangeDetected) { ChangeDetected }
set FILTER(FileCorrupted) { FileCorrupted }

Chapter 10 Implementing an Intelligent Security System

10 - 25

set FILTER(InfectionStopped) { InfectionStopped }
set FILTER(PCConfig_NotChecked) { PCConfig_NotChecked }
set FILTER(Virus_Alert) { Virus_Alert }
set FILTER(Warnings) { Warnings }
set FILTER(ActDisinfect) { ActDisinfect }
set FILTER(ActDelete) { ActDelete }
set FILTER(ActReportOnly) { ActReportOnly }
set FILTER(ActRename) { ActRename }
set FILTER(ResMassiveInfection) { ResMassiveInfection }
set FILTER(ResInfected) { ResInfected }
set FILTER(ResSuspected) { ResSuspected }

foreach f [array names FILTER] {
upvar 0 $f F
puts "$f $F"

}

}

Figure 10.5.2.4. Code of code_inference.tcl

The main part of fuzzy reasoning, i.e. inference rules are given in lib_pinf.tcl. It
calculates scanning and integrity checking risks according to used global variables.
There are five fuzzy sets for scanning risk: Scanning_Risk_Very_Low,
Scanning_Risk_Low, Scanning_Risk_Moderate, Scanning_Risk_High and
Scanning_Risk_Very_High. There are also three fuzzy sets for integrity checking
risk: Int_Risk_Very_Low, Int_Risk_Moderate and Int_Risk_High. Fuzzy sets are
created by function FzyCreateSet which is Tcl implementation of the same function
from E. Cox's C++ fuzzy code library. An example is shown on Figure 10.5.2.5.
together with its graphical presentation obtained by function FzyDrawSet. Sets are
defined by their names and coordinates. First list gives the range for x axis. Second
list gives pairs of x and y coordinates.

FzyCreateSet Int_Risk_Very_Low COORDINATES {0 10} {0 1 1.5 0 10 0}

FuzzySet: Int_Risk_Very_Low
Description:

1.00.
0.90 .
0.80
0.70 .
0.60 .
0.50 .
0.40 .
0.30 .
0.20 .
0.10 .
0.00 ..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

Figure 10.5.2.5. An example of fuzzy set

There are 11 rules for calculation of scanning and integrity checking risks. An
example of pseudo code definition of particular rule is as following:

IF [Action IS Scan A: OR Action IS Scan B: OR Action IS Scan Folder OR Action
 IS Scan All Hard Disks when Idle OR Action IS Scan Network]
 AND Event IS Scanner up to date
 AND Event IS OK
THEN Scanning Risk IS Very Low

Chapter 10 Implementing an Intelligent Security System

10 - 26

This rule translated into Tcl code with earlier defined functions, variables and fuzzy
sets is as following:

set SCANS [OR $Scan_A $Scan_B $Scan_Folder $Scan_All $Scan_Net]

IF [AND $SCANS $Scan_UpDate $Scan_OK] THEN \
 {Scanning_Risk Scanning_Risk_Very_Low}

Other rules are transferred to Tcl code in similar way, as it is shown later on Figure
10.5.2.6.

There are also eight plans of reactions to particular risk. There are eight fuzzy sets for
every particular plan, namely PLAN_1, PLAN_2, PLAN_3, PLAN_4, PLAN_5,
PLAN_6, PLAN_7, PLAN_8. These fuzzy sets are also created by function
FzyCreateSet. There are two sets of rules for calculation of plans. The rules of the
first set are almost indentical to those for risk evaluation in the first part, i.e. when
certain combination of actions is concerned. The difference is in the second part of the
rule where particular combination of plans is invoked as in following example:

set SCANS [OR $Scan_A $Scan_B $Scan_Folder $Scan_All $Scan_Net]

IF [AND $SCANS $Scan_UpDate $Scan_OK] THEN \
{ PLAN PLAN_1 } { PLAN PLAN_3 } { PLAN PLAN_5}

The other set of plan rules is based on influence of calculated risks. For 15 possible
combinations of scanning and integrity checking risks there are 15 rules. An example
of the rule in plain language and its translation to Tcl code is as following:

IF Scanning Risk IS Very Low AND Integrity Checking Risk IS Very Low
THEN Plan IS Plan_1 (the plan for very low risk)

IF [AND [IS $Sx Scanning_Risk_Very_Low] [IS $Ix Int_Risk_Very_Low
]] THEN { PLAN PLAN_1 }

The complete code for inference rules is given on Figure 10.5.2.6.

##
#Both functions are fuzzy experts.
#They are separated because of fuzzy engine iplementation.
#It is impossible to have same variables on the both sides of the
#rules, so there are almost same rules for RISK evaluation
#and extended set for PLAN calculation because of risk influence.
##

#Calculates Scanning_Risk and IntChecking_Risk
#based on the variables parsed out of input messages
#Uses global variables
#Returns Scanning_Risk IntChecking_Risk in list

proc GENERAL_RISK { } {

global Scan_A
global Scan_B
global Scan_Folder
global Scan_All
global Scan_Net
global Checking
global F_SecureGatekeeper

global Boot_OK

Chapter 10 Implementing an Intelligent Security System

10 - 27

global Boot_NotChecked
global Partition_OK
global Partition_NotChecked
global PCConfig_OK
global CMOSMemory_OK
global CMOSMemory_NotChecked
global Scan_UpDate
global Scan_OffDate
global Scan_OK
global Scan_Aborted
global ChangeDetected
global FileCorrupted
global InfectionStopped
global PCConfig_NotChecked
global Virus_Alert
global Warnings

global ActDisinfect
global ActDelete
global ActReportOnly
global ActRename

global ResMassiveInfection
global ResInfected
global ResSuspected

###

catch {
load ../../lib/fzy.so ;# fzy.so is fuzzy engine with Tcl interface
}

###
#creation of fuzzy sets

catch {

FzyCreateSet Int_Risk_Very_Low COORDINATES {0 10} {0 1 1.5 0 10 0}
FzyCreateSet Int_Risk_Moderate COORDINATES {0 10} {0 0 3.5 0 5 1 6.5 0 10 0}
FzyCreateSet Int_Risk_High COORDINATES {0 10} {0 0 7.5 0 10 1}

FzyCreateSet Scanning_Risk_Very_Low COORDINATES {0 10} {0 1 1.5 0 10 0}
FzyCreateSet Scanning_Risk_Low COORDINATES {0 10} {0 0 1 0 2.5 1 4 0 10 0}
FzyCreateSet Scanning_Risk_Moderate COORDINATES {0 10} {0 0 3.5 0 5 1 6.5 0 10 0}
FzyCreateSet Scanning_Risk_High COORDINATES {0 10} {0 0 7.5 0 9.5 1 10 0}
FzyCreateSet Scanning_Risk_Very_High COORDINATES {0 10} {0 0 8.5 0 10 1}

FzyCreateSet PLAN_1 COORDINATES {0 10} {0 0 1 1 2 0 10 0}
FzyCreateSet PLAN_2 COORDINATES {0 10} {0 0 1 0 2 1 3 0 10 0}
FzyCreateSet PLAN_3 COORDINATES {0 10} {0 0 2 0 3 1 4 0 10 0}
FzyCreateSet PLAN_4 COORDINATES {0 10} {0 0 3 0 4 1 5 0 10 0}
FzyCreateSet PLAN_5 COORDINATES {0 10} {0 0 4 0 5 1 6 0 10 0}
FzyCreateSet PLAN_6 COORDINATES {0 10} {0 0 5 0 6 1 7 0 10 0}
FzyCreateSet PLAN_7 COORDINATES {0 10} {0 0 3.5 0 7 1 10 0}
FzyCreateSet PLAN_8 COORDINATES {0 10} {0 0 7 0 8 1 9 0 10 0}

}

###

#Calculation of risks

VERY LOW RISK
Scanning_Risk
Rule 1.

set SCANS [OR $Scan_A $Scan_B $Scan_Folder $Scan_All $Scan_Net]

IF [AND $SCANS $Scan_UpDate $Scan_OK] THEN \
{Scanning_Risk Scanning_Risk_Very_Low}

IntChecking_Risk
Rule 2.

IF [AND $Checking $Boot_OK $Partition_OK $PCConfig_OK $CMOSMemory_OK] THEN \
{ IntChecking_Risk Int_Risk_Very_Low}

Chapter 10 Implementing an Intelligent Security System

10 - 28

LOW RISK:
Scanning_Risk
Rule 3.

IF [AND $SCANS $Scan_Aborted] THEN \
{Scanning_Risk Scanning_Risk_Low}

MODERATE RISK:
Scanning_Risk
Rule 4.

IF [AND $SCANS \
[OR $Warnings $Virus_Alert] \
[OR $ActDisinfect $ActDelete] \
[OR $ResMassiveInfection $ResInfected $ResSuspected]] THEN \

{ Scanning_Risk Scanning_Risk_Moderate }

Rule 5.

IF [AND $F_SecureGatekeeper $InfectionStopped] THEN \
{ Scanning_Risk Scanning_Risk_Moderate }

IntChecking_Risk
Rule 6.

IF [AND $Checking \
[OR $Boot_NotChecked $Partition_NotChecked $PCConfig_NotChecked $CMOSMemory_NotChecked
]] THEN \
{ IntChecking_Risk Int_Risk_Moderate }

Rule 7.

IF [AND $Checking $FileCorrupted] THEN \
{ IntChecking_Risk Int_Risk_Moderate }

HIGH RISK:
Scanning_Risk
Rule 8.

IF [AND $SCANS $Scan_OffDate] THEN {Scanning_Risk Scanning_Risk_High}

Rule 9.

IF [OR $SCANS \
[OR $Warnings $Virus_Alert] \
[OR $ActReportOnly $ActRename] \
$ResInfected] THEN \

{ Scanning_Risk Scanning_Risk_High}

IntChecking_Risk
Rule 10.

IF [AND $Checking \
[OR $Virus_Alert $ChangeDetected]] THEN \

{ IntChecking_Risk Int_Risk_High }

VERY HIGH RISK:
Scanning_Risk
Rule 11.

IF [OR $SCANS \
[OR $Warnings $Virus_Alert] \
[OR $ActReportOnly $ActRename] \
[OR $ResMassiveInfection $ResSuspected]] THEN \

{ Scanning_Risk Scanning_Risk_Very_High}

Chapter 10 Implementing an Intelligent Security System

10 - 29

Defuzzification

set Sx [lindex [DEFUZZ Scanning_Risk] 0]
set Ix [lindex [DEFUZZ IntChecking_Risk] 0]

return "$Sx $Ix"
}

#end GENERAL_RISK

###
#Calculates PLAN
#based on the variables parsed out of input message
#Uses global variables
#Returns the plan number

proc GENERAL_PLAN { Sx Ix } {

global Scan_A
global Scan_B
global Scan_Folder
global Scan_All
global Scan_Net
global Checking
global F_SecureGatekeeper

global Boot_OK
global Boot_NotChecked
global Partition_OK
global Partition_NotChecked
global PCConfig_OK
global CMOSMemory_OK
global CMOSMemory_NotChecked
global Scan_UpDate
global Scan_OffDate
global Scan_OK
global Scan_Aborted
global ChangeDetected
global FileCorrupted
global InfectionStopped
global PCConfig_NotChecked
global Virus_Alert
global Warnings

global ActDisinfect
global ActDelete
global ActReportOnly
global ActRename

global ResMassiveInfection
global ResInfected
global ResSuspected

###

VERY LOW RISK
Scanning_Risk plans
Rule 1.

set SCANS [OR $Scan_A $Scan_B $Scan_Folder $Scan_All $Scan_Net]

IF [AND $SCANS $Scan_UpDate $Scan_OK] THEN \
{ PLAN PLAN_1 } { PLAN PLAN_3 } { PLAN PLAN_5}

IntChecking_Risk plans
Rule 2.

IF [AND $Checking $Boot_OK $Partition_OK $PCConfig_OK $CMOSMemory_OK] THEN \
{ PLAN PLAN_1 } { PLAN PLAN_2 } { PLAN PLAN_4} { PLAN PLAN_7 } { PLAN PLAN_8}

LOW RISK:
Scanning_Risk plans
Rule 3.

Chapter 10 Implementing an Intelligent Security System

10 - 30

IF [AND $SCANS $Scan_Aborted] THEN \
{ PLAN PLAN_2 } { PLAN PLAN_3 } { PLAN PLAN_5}

MODERATE RISK:
Scanning_Risk plans
Rule 4.

IF [AND $SCANS \
[OR $Warnings $Virus_Alert] \
[OR $ActDisinfect $ActDelete] \
[OR $ResMassiveInfection $ResInfected $ResSuspected]] THEN \

{ PLAN PLAN_4 } { PLAN PLAN_6}

Rule 5.

IF [AND $F_SecureGatekeeper $InfectionStopped] THEN \
{ PLAN PLAN_4 } { PLAN PLAN_6 }

IntChecking_Risk plans
Rule 6.

IF [AND $Checking \
[OR $Boot_NotChecked $Partition_NotChecked $PCConfig_NotChecked $CMOSMemory_NotChecked
]] THEN \
{ PLAN PLAN_3 } { PLAN PLAN_4} { PLAN PLAN_8 } { PLAN PLAN_7}

Rule 7.

IF [AND $Checking $FileCorrupted] THEN \
{ PLAN PLAN_3 } { PLAN PLAN_4} { PLAN PLAN_7 } { PLAN PLAN_8}

HIGH RISK:
Scanning_Risk plans
Rule 8.

IF [AND $SCANS $Scan_OffDate] THEN { PLAN PLAN_7 }

Rule 9.

IF [OR $SCANS \
[OR $Warnings $Virus_Alert] \
[OR $ActReportOnly $ActRename] \
$ResInfected] THEN \

{ PLAN PLAN_7 }

IntChecking_Risk plans
Rule 10.

IF [AND $Checking \
[OR $Virus_Alert $ChangeDetected]] THEN \

{ PLAN PLAN_8 } { PLAN PLAN_5} { PLAN PLAN_6 } { PLAN PLAN_7}

VERY HIGH RISK:
Scanning_Risk plans
Rule 11.

IF [OR $SCANS \
[OR $Warnings $Virus_Alert] \
[OR $ActReportOnly $ActRename] \
[OR $ResMassiveInfection $ResSuspected]] THEN \

{ PLAN PLAN_8 }

###
#Calculates PLAN
#based on the Scanning_Risk and IntChecking_Risk

IF [AND [IS $Sx Scanning_Risk_Very_Low] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN
PLAN_1 }

IF [AND [IS $Sx Scanning_Risk_Very_Low] [IS $Ix Int_Risk_Moderate]] THEN { PLAN
PLAN_3 }

IF [AND [IS $Sx Scanning_Risk_Very_Low] [IS $Ix Int_Risk_High]] THEN { PLAN
PLAN_5 }

Chapter 10 Implementing an Intelligent Security System

10 - 31

IF [AND [IS $Sx Scanning_Risk_Low] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN PLAN_2
}

IF [AND [IS $Sx Scanning_Risk_Low] [IS $Ix Int_Risk_Moderate]] THEN { PLAN PLAN_3
}

IF [AND [IS $Sx Scanning_Risk_Low] [IS $Ix Int_Risk_High]] THEN { PLAN PLAN_5 }

IF [AND [IS $Sx Scanning_Risk_Moderate] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN
PLAN_4 }

IF [AND [IS $Sx Scanning_Risk_Moderate] [IS $Ix Int_Risk_Moderate]] THEN { PLAN
PLAN_4 }

IF [AND [IS $Sx Scanning_Risk_Moderate] [IS $Ix Int_Risk_High]] THEN { PLAN
PLAN_6 }

IF [AND [IS $Sx Scanning_Risk_High] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN
PLAN_7 }

IF [AND [IS $Sx Scanning_Risk_High] [IS $Ix Int_Risk_Moderate]] THEN { PLAN
PLAN_7 }

IF [AND [IS $Sx Scanning_Risk_High] [IS $Ix Int_Risk_High]] THEN { PLAN PLAN_7 }

IF [AND [IS $Sx Scanning_Risk_Very_High] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN
PLAN_8 }

IF [AND [IS $Sx Scanning_Risk_Very_High] [IS $Ix Int_Risk_Moderate]] THEN { PLAN
PLAN_8 }

IF [AND [IS $Sx Scanning_Risk_Very_High] [IS $Ix Int_Risk_High]] THEN { PLAN
PLAN_8 }

Defuzzification

set REZ [DEFUZZ PLAN]

set PLAN [lindex $REZ 0]

return $PLAN
}

#end GENERAL_PLAN

Figure 10.5.2.6. Code of lib_pinf.tcl

All fuzzy sets used in previous evaluations are shown on Figure 10.5.2.7.

FuzzySet: Int_Risk_Very_Low
Description:

1.00.
0.90 .
0.80
0.70 .
0.60 .
0.50 .
0.40 .
0.30 .
0.20 .
0.10 .
0.00 ..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

Chapter 10 Implementing an Intelligent Security System

10 - 32

FuzzySet: Int_Risk_Moderate
Description:

1.00 .
0.90 . .
0.80 . .
0.70 . .
0.60
0.50 . .
0.40 . .
0.30 . .
0.20 . .
0.10 . .
0.00........................

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: Int_Risk_High
Description:

1.00
0.90 ..
0.80 ..
0.70 .
0.60 ..
0.50 ..
0.40 .
0.30 ..
0.20 .
0.10 ..
0.00..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: Scanning_Risk_Very_Low
Description:

1.00.
0.90 .
0.80
0.70 .
0.60 .
0.50 .
0.40 .
0.30 .
0.20 .
0.10 .
0.00 ..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: Scanning_Risk_Low
Description:

1.00 .
0.90 . .
0.80 .
0.70 . .
0.60 .
0.50 . .
0.40 . .
0.30 . .
0.20 . .
0.10 . .
0.00........ ..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

Chapter 10 Implementing an Intelligent Security System

10 - 33

FuzzySet: Scanning_Risk_Moderate
Description:

1.00 .
0.90 . .
0.80 . .
0.70 . .
0.60
0.50 . .
0.40 . .
0.30 . .
0.20 . .
0.10 . .
0.00........................

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: Scanning_Risk_High
Description:

1.00 .
0.90 .
0.80 .
0.70 .. .
0.60 .
0.50 .
0.40 .
0.30 .. .
0.20 .
0.10 .
0.00.. .

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: Scanning_Risk_Very_High
Description:

1.00
0.90 .
0.80 .
0.70 .
0.60 .
0.50 .
0.40 .
0.30 .
0.20 .
0.10 .
0.00..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: PLAN_1
Description:

1.00
0.90 .
0.80 . .
0.70 .
0.60 .
0.50 .
0.40 . .
0.30 .
0.20 .
0.10 . .
0.00. ..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

Chapter 10 Implementing an Intelligent Security System

10 - 34

FuzzySet: PLAN_2
Description:

1.00
0.90 .
0.80 . .
0.70 .
0.60 .
0.50 . .
0.40 .
0.30 .
0.20 . .
0.10 .
0.00....... ..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: PLAN_3
Description:

1.00
0.90 .
0.80 . .
0.70 .
0.60 .
0.50 . .
0.40 .
0.30 .
0.20 . .
0.10
0.00.............. ..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: PLAN_4
Description:

1.00
0.90 ..
0.80
0.70 . .
0.60 . .
0.50
0.40 . .
0.30 .
0.20 .
0.10 . .
0.00....................

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: PLAN_5
Description:

1.00 .
0.90
0.80 . .
0.70 . .
0.60
0.50 . .
0.40
0.30 . .
0.20 . .
0.10
0.00...........................

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

Chapter 10 Implementing an Intelligent Security System

10 - 35

FuzzySet: PLAN_6
Description:

1.00
0.90 ..
0.80
0.70 . .
0.60 . .
0.50
0.40 . .
0.30 .
0.20 .
0.10 . .
0.00.................................

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: PLAN_7
Description:

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00......................... ..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

FuzzySet: PLAN_8
Description:

1.00
0.90 .
0.80 . .
0.70 .
0.60 .
0.50 . .
0.40 .
0.30 .
0.20 . .
0.10 .
0.00..

0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0
0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00
Domained: 0.00 to 10.00

Figure 10.2.5.7. Fuzzy sets

The shapes of fuzzy sets were firstly sketched manually and then verified and tuned
by using FOOL & FOX separately. The rules for FOOL & FOX's rulebase were the
same as the last set of rules for plans. It was enough for rough tuning of fuzzy sets and
then transferring them to Tcl code. The further processing of inference rules code
showed that the simulation on FOOL & FOX was quite suitable. The contents of
rulebase file for FOOL & FOX is presented on Figure 10.2.5.8.

@FOOLDATA-VERSION 0.2
@PRECISION= 500
@LINGUISTIC_VARIABLES= 3
@LV= scan_risk
@LVOUT= NO
@UNIT= bit
@XSTART= 0.000000
@XEND= 10.000000
@KOMP_OP= 1 1 0.000000

Chapter 10 Implementing an Intelligent Security System

10 - 36

@ADJECTIV= 5
@ADJ= very_low
@FKT= 0 0.000000 0.000000 1.500000 0.000000 1.000000
@ADJ= low
@FKT= 0 2.500000 1.500000 1.500000 0.000000 1.000000
@ADJ= moderate
@FKT= 0 5.000000 1.500000 1.500000 0.000000 1.000000
@ADJ= high
@FKT= 0 9.500000 2.000000 0.500000 0.000000 1.000000
@ADJ= very_high
@FKT= 0 10.000000 1.500000 0.000000 0.000000 1.000000
@LV= intch_risk
@LVOUT= NO
@UNIT= bit
@XSTART= 0.000000
@XEND= 10.000000
@KOMP_OP= 1 1 0.000000
@ADJECTIV= 3
@ADJ= very_low
@FKT= 0 0.000000 0.000000 1.500000 0.000000 1.000000
@ADJ= moderate
@FKT= 0 5.000000 1.500000 1.500000 0.000000 1.000000
@ADJ= high
@FKT= 0 10.000000 2.500000 0.000000 0.000000 1.000000
@LV= plan
@LVOUT= YES
@UNIT= bit
@XSTART= 0.000000
@XEND= 10.000000
@KOMP_OP= 1 1 0.000000
@ADJECTIV= 8
@ADJ= plan_1
@FKT= 0 1.000000 1.000000 1.000000 0.000000 1.000000
@ADJ= plan_2
@FKT= 0 2.000000 1.000000 1.000000 0.000000 1.000000
@ADJ= plan_3
@FKT= 0 3.000000 1.000000 1.000000 0.000000 1.000000
@ADJ= plan_4
@FKT= 0 4.000000 1.000000 1.000000 0.000000 1.000000
@ADJ= plan_5
@FKT= 0 5.000000 1.000000 1.000000 0.000000 1.000000
@ADJ= plan_6
@FKT= 0 6.000000 1.000000 1.000000 0.000000 1.000000
@ADJ= plan_7
@FKT= 0 7.000000 3.500000 3.000000 0.000000 1.000000
@ADJ= plan_8
@FKT= 0 8.000000 1.000000 1.000000 0.000000 1.000000
@RULEBASE= 15
@RULE= IF scan_risk = very_low & intch_risk = very_low THEN plan = plan_1 WITH
1.000000 @END
@RULE= IF scan_risk = very_low & intch_risk = moderate THEN plan = plan_3 WITH
1.000000 @END
@RULE= IF scan_risk = very_low & intch_risk = high THEN plan = plan_5 WITH 1.000000
@END
@RULE= IF scan_risk = low & intch_risk = very_low THEN plan = plan_2 WITH 1.000000
@END
@RULE= IF scan_risk = low & intch_risk = moderate THEN plan = plan_3 WITH 1.000000
@END
@RULE= IF scan_risk = low & intch_risk = high THEN plan = plan_5 WITH 1.000000 @END
@RULE= IF scan_risk = moderate & intch_risk = very_low THEN plan = plan_4 WITH
1.000000 @END
@RULE= IF scan_risk = moderate & intch_risk = moderate THEN plan = plan_4 WITH
1.000000 @END
@RULE= IF scan_risk = moderate & intch_risk = high THEN plan = plan_6 WITH 1.000000
@END
@RULE= IF scan_risk = high & intch_risk = very_low THEN plan = plan_7 WITH 1.000000
@END
@RULE= IF scan_risk = high & intch_risk = moderate THEN plan = plan_7 WITH 1.000000
@END
@RULE= IF scan_risk = high & intch_risk = high THEN plan = plan_7 WITH 1.000000
@END
@RULE= IF scan_risk = very_high & intch_risk = very_low THEN plan = plan_8 WITH
1.000000 @END
@RULE= IF scan_risk = very_high & intch_risk = moderate THEN plan = plan_8 WITH
1.000000 @END
@RULE= IF scan_risk = very_high & intch_risk = high THEN plan = plan_8 WITH
1.000000 @END

Chapter 10 Implementing an Intelligent Security System

10 - 37

@OPERATORS
@CERTAINTY= 1 1 -1.000000
@INFERENCE= 1 1 -1.000000
@ACCUMULATION= 5 24 -1.000000
@AGGREGATION= 0 1 1 -1.000000
@AGGREGATION= 1 1 1 -1.000000
@AGGREGATION= 2 1 1 -1.000000
@AGGREGATION= 3 1 1 -1.000000
@AGGREGATION= 4 1 1 -1.000000
@AGGREGATION= 5 1 1 -1.000000
@AGGREGATION= 6 1 1 -1.000000
@AGGREGATION= 7 1 1 -1.000000
@AGGREGATION= 8 1 1 -1.000000
@AGGREGATION= 9 1 1 -1.000000
@AGGREGATION= 10 1 1 -1.000000
@AGGREGATION= 11 1 1 -1.000000
@AGGREGATION= 12 1 1 -1.000000
@AGGREGATION= 13 1 1 -1.000000
@AGGREGATION= 14 1 1 -1.000000
@DEFUZZIFICATION
@OUTPUT= 1
@METHOD= 1

Figure 10.5.2.8. Rulebase for FOOL & FOX simulation

The output from unit of inference rules is quite simple. It gives the type of event (VIR
in this case), the name of unit which gave last report, time stamp, number of chosen
plan (rounded because evaluation gives real value), and corresponding values of
Scanning_Risk and IntChecking_Risk. These last two values are not necessary, except
for control purposes. The output is written into file in directory /problem_status.
According to data given in previous sections, the plan No. 7 was chosen. The output is
shown on Figure 10.5.2.9.

- VIR DISPATCHER-IN { 1342167999 } { 7 9.101562 4.960938 }

Figure 10.5.2.9. Output from inference rules unit

10.5.3. Reasoning Unit and Explanation Unit

Reasoning unit is realized by program resoning_unit.tcl, placed in directory /bin. It
reads the output from inference rules unit from /problem_status and calls procedure
code_pcplan.tcl from /lib, which according to obtained result from inference rules
unit, extracts corresponding plan with its commands. In this case command is simple
a call of particular batch file plan*.bat, which will be executed later. The result of
this extraction is placed into /explanation_unit. Explanation unit serves here as a
store place from which particular plan will be read. The code of resoning_unit.tcl is
shown on Figure 10.5.3.1, and code of code_pcplan.tcl is shown on Figure 10.5.3.2.
The output from the reasoning unit for the previously obtained plan is given on Figure
10.5.3.3.

MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "REASONING"

set MYHOST "*"

Chapter 10 Implementing an Intelligent Security System

10 - 38

set MYREPOSITORY "../problem_status"
set MYCHECK "../check/${MYNAME}.chk"

set MYOUT "../explanation_unit"
set MY_IN_ENTITY "*"
set MY_EXT "TXT"

set LASTCHECK 0
set cCONTROL "" ;# current control info

###

set PDIR "../lib"

calls needed procedures

source $PDIR/lib_names.tcl
source $PDIR/code_pcplan.tcl

###

proc MAIN { } {

global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT

global MYOUT MYNAME
global TYPE HOST

set TYPE "VIR"
set HOST "-"

set fname "${MYOUT}/[doFILEMASK $TYPE [doTIMESTAMP] $HOST $MYNAME $MY_EXT]"
set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {

set P [Process9 $i]
set CMD "PLAN_${P} $fname"
puts ">>$CMD<<"
eval $CMD

update_Check $i
}

}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure 10.5.3.1. Code of resoning_unit.tcl

###

proc Process9 { fl } {

set P 0

set f [open $fl r]

while { [gets $f line] >= 0 } {
set line [lindex $line 4]

Chapter 10 Implementing an Intelligent Security System

10 - 39

scan $line " %d %f %f " P Sx Ix
close $f
return $P

}

close $f
return $P

}

###

#PLAN 0 if error ----
proc PLAN_0 { FL } {

}

#PLAN 1
proc PLAN_1 { FL } {

set f [open $FL w]
puts $f "REM PLAN 1"
puts $f "plan1.bat"

close $f
}
#END PLAN 1

#PLAN 2
proc PLAN_2 { FL } {

set f [open $FL w]
puts $f "REM PLAN 2"
puts $f "plan2.bat"

close $f
}
#END PLAN 2

#PLAN 3
proc PLAN_3 { FL } {

set f [open $FL w]
puts $f "REM PLAN 3"
puts $f "plan3.bat"

close $f
}
#END PLAN 3

#PLAN 4
proc PLAN_4 { FL } {

set f [open $FL w]
puts $f "REM PLAN 4"
puts $f "plan4.bat"

close $f
}
#END PLAN 4

#PLAN 5
proc PLAN_5 { FL } {

set f [open $FL w]
puts $f "REM PLAN 5"
puts $f "plan5.bat"

close $f
}
#END PLAN 5

Chapter 10 Implementing an Intelligent Security System

10 - 40

#PLAN 6
proc PLAN_6 { FL } {

set f [open $FL w]
puts $f "REM PLAN 6"
puts $f "plan6.bat"

close $f
}
#END PLAN 6

#PLAN 7
proc PLAN_7 { FL } {

set f [open $FL w]
puts $f "REM PLAN 7"
puts $f "plan7.bat"

close $f
}
#END PLAN 7

#PLAN 8
proc PLAN_8 { FL } {

set f [open $FL w]
puts $f "REM PLAN 8"
puts $f "plan8.bat"

close $f
}
#END PLAN 8

Figure 10.5.3.2. Code of code_pcplan.tcl

REM PLAN 7
 plan7.bat

Figure 10.5.3.3 The output from reasoning unit

10.6. Implementation of Adaptation Subsystem

The implementation of adaptation unit was very simple. Because all relevant
decisions were practicaly made at organization level, mostly by inference rules unit,
there were no need for the purposes of this prototype to introduce additional criterion
of adaptation. It is intended, however, to be implemented in some future realizations
where more active feedback between various parts of this system will be included.
Only one of modules from adaptation subsystem, the regulator, was realized as its
executive module. In this version it simply transferred the output from
/explanation_unit directory to its output directories /output_glavni and
/output_virusi for further processing. The Tcl code of regulator is given on the
Figure 10.6.1. Output directories contain the same sequence as shown on Figure
10.5.3.3.

Chapter 10 Implementing an Intelligent Security System

10 - 41

MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "REGULATOR"

set MYHOST "*"
set MYREPOSITORY "../explanation_unit"
set MYCHECK "../check/${MYNAME}.chk"

set MYOUT "../output_glavni ../output_virusi"
set MY_IN_ENTITY "*"
set MY_EXT "TXT"

set LASTCHECK 0
set cCONTROL "" ;# current control info

###

set PDIR "../lib"
source $PDIR/lib_names.tcl

###

proc MAIN { } {

global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT

global MYOUT MYNAME
global TYPE HOST

set TYPE "VIR"
set HOST "-"

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {

;#just copy into OUT DIR, at the moment

foreach fname $MYOUT {
exec cp $i $fname

}

update_Check $i
}

}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure 10.6.1. Code of regulator.tcl

Chapter 10 Implementing an Intelligent Security System

10 - 42

10.7. Implementation of Executive Elements

The executive level consists of executive transceivers and executive agents. The
executive transceiver translates the directions from the regulator to instructions
understandable by executive agent. For the purposes of this development the
transceiver was realized as a group of simple batch files corresponding to particular
plans. The protocol which will execute commands from remote Unix host and start
particular batch file on local MS Windows host was not specially developed, because
it is very platform dependent. The examples of batch files were adapted for the
specific platform and agents, which were available for this development. They are
presented on Figure 10.7.1. just to show way on which particular plan can be
executed. They can be changed easily accordingly to platform and chosen agents.

The executive agents were the same as observing agents, i.e. scanner F-Secure and
integrity checker Integrity Master. It has to be noticed here that they cannot be
executed exclusively automatically, but in interactive mode, which is understandable,
because they were not intended to be included in bigger automated protection
systems. Integrity Master also can occasionally crash system on MS Windows 98
platform on which it was installed for testing purposes. Those are specifics of
particular agents and can be expected when using tools, which somebody else has
developed.

@echo off
REM PLAN_1
REM DO NOTHING
REM Scanning_Risk and IntChecking_Risk Very Low
echo ############################
echo ## ##
echo ## System is OK. ##
echo ## No viruses found. ##
echo ## No anomalies found. ##
echo ## Keeping regular state. ##
echo ## ##
echo ############################

@echo off
REM PLAN_2
REM Does scanning when Scan Aborted is reported
REM Case when Scanning_Risk is Low
echo Scanning again...
c:
cd \progra~1\datafe~1\F-Secure\Anti-V~1
f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /REPORTONLY
REM Alias [11915] means Scan all local drives (Hard, Floppy, CD)

@echo off
REM PLAN_3
REM Case when Scanning_Risk is Very Low or Low
REM IntChecking_Risk is Moderate
echo Integrity Checking and Scanning again...
REM Integrity Checking of entire disks including system sectors
c:
cd \IM_HOME

Chapter 10 Implementing an Intelligent Security System

10 - 43

im.exe /CE /DE
REM Start Scanner
c:
cd \progra~1\datafe~1\F-Secure\Anti-V~1
f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /REPORTONLY

@echo off
REM PLAN_4
REM Case when Scanning_Risk is Moderate
REM IntChecking_Risk is Very Low or Moderate
echo Restore from last backup
echo Integrity Checking and Scanning again...
REM Restart and restore from backup
c:
cd \system
restore.bat
REM Start Integrity Checker
c:
cd \IM_HOME
im.exe /CE /DE
REM Start Scanner
c:
cd \progra~1\datafe~1\F-Secure\Anti-V~1
f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /REPORTONLY

@echo off
REM PLAN_5
REM Scanning_Risk is Very Low or Low
REM IntChecking_Risk is High (possibly reports virus)
echo Scanning and Integrity Checking again...
REM Start Scanner with disinfect option
c:
cd \progra~1\datafe~1\F-Secure\Anti-V~1
f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /DISINF /DISINFREP
REM Start Integrity Checker
c:
cd \IM_HOME
im.exe /CE /DE

@echo off
REM PLAN_6
REM Scanning_Risk is Moderate
REM IntChecking_Risk is High
echo Restore from last backup
echo Scanning and Integrity Checking again...
REM Restart and restore from backup
c:
cd \system
restore.bat
REM Start Scanner with disinfect option
c:
cd \progra~1\datafe~1\F-Secure\Anti-V~1
f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /DISINF /DISINFREP
REM Start Integrity Checker
c:
cd \IM_HOME
im.exe /CE /DE

Chapter 10 Implementing an Intelligent Security System

10 - 44

@echo off
REM PLAN_7
REM Scanning_Risk is High
REM IntChecking Risk may be Very Low, Moderate or High
echo Update scanner if necessary
echo Restore from last backup
echo Scanning and Integrity Checking again...
REM Update scanner if necessary
c:
cd \progra~1\datafe~1\F-Secure\Anti-V~1
update.bat
REM Restart and restore from backup
c:
cd \system
restore.bat
REM Start Scanner with disinfect option
c:
cd \progra~1\datafe~1\F-Secure\Anti-V~1
f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /DISINF /DISINFREP
REM Start Integrity Checker
c:
cd \IM_HOME
im.exe /CE /DE

@echo off
REM PLAN_8
REM Scanning_Risk is Very High (e.g. Massive Infection)
REM IntChecking Risk may be Very Low, Moderate or High
echo Update scanner if necessary
echo Restore from last backup
echo Scanning and Integrity Checking again...
REM Update scanner if necessary
c:
cd \progra~1\datafe~1\F-Secure\Anti-V~1
update.bat
REM Restart and restore from backup
c:
cd \system
restore.bat
REM Start Scanner with disinfect option
REM Delete files if disinfection fails
c:
f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /DISINF /DISINFDEL
REM Start Integrity Checker
c:
cd \IM_HOME
im.exe /CE /DE

Figure 10.7.1. Examples of possible batch files for particular plans

Chapter 10 Implementing an Intelligent Security System

10 - 45

10.8. Lessons Learned

The development process of this prototype was extremely interesting. There are many
lessons, which can be learned in attempts to transfer theory to practice. Some
problems can appear where least expected, but this very fact is the one which makes
every development process exciting and gives opportunity to learn more. I may say
that finishing this prototype I am just on the beginning of new phase, just as its
working name suggests.

First lesson, which had to be learned is about using already existing security tools as
agents. No matter how they might be advanced and successful in performing their
main tasks, their reports are far from being standardized. It may be discussed how
much particular tool is user friendly by generating verbose reports, but it is certainly
the main obstacle in its incorporating into a bigger automated system. Therefore, lot
of time was spent on designing proper formating of existing reports so they could be
easily handled in whole processing by different levels. That time could certainly be
spent in better way. The solution of problem is not easy. The producers of security
tools (not only anti-virus products) should agree about standard form of their output
reports. There are some efforts of that kind among the producers of intruder detection
tools, but those projects are still in beginning phase. In developing this prototype the
intent was to have uniform form of messages traveling between different levels inside
the prototype, but so far this tool does not produce much of output reports and work is
yet to be done on making them standard. The open question is which standard they
should follow.

The second lesson to learn was how to make prototype as efficient as possible. Some
modules, which seemed to be necessary in theory, appeared to be not so practical in
real implementation. Yet this prototype is still in development phase and is better to
have redundant elements in theory than find that they are missing in practice. The role
of knowledge database will certainly have to be revised. Memory of some kind is
always needed and that idea cannot be rejected. It can only be better realized than it is
currently. Also, some elements of adaptation subsystem might appear unnecessary at
the moment, but the fact is that prototype in its present version is made to be rather
"paranoid" about event of infection by computer viruses. Therefore, not much
additional adaptation was needed, but in further practical use more tuning to get
proper reaction will certainly be needed.

The third important lesson was about communication between diferent modules.
Presently it is conducted through sharing of files and directories between processes,
but this type of communication has security flaws itself. Yet it was very easy to
implement and to make prototype working it was sufficient. However, in further
realizations some more secure types of communication will have to be considered.

Chapter 10 Implementing an Intelligent Security System

10 - 46

Chapter 11 Building Secure Information Systems

11 - 1

11.BUILDING SECURE INFORMATION
 SYSTEMS
In this chapter the ways for building secure information systems with an intelligent
security system will be described. Some other aspects of information security, such as
human interface and privacy protection, will be briefly introduced.

11.1. Conventional (von Neumann's) Architecture

The majority of today's information systems are implementing computing systems
based on von Neumann's architecture. The main characteristics of that architecture
were presented in Chapter 1. The drawbacks of such architecture regarding security
requirements were summarized in Chapter 5. The main drawbacks were exactly the
ones, which make von Neumann's architecture suitable for design of computing
systems, i.e. its universality and the use of binary logic for computing. Universality
means that the computing systems are not task oriented, but they are programmed to
perform various tasks depending on the implemented program. On the one hand this
characteristic makes computing easy, on the other hand it is inconvenient regarding
security issues, because anything, which can be programmed, may also be
programmed to perform malicious activities in the system. Binary logic makes the
precise detection of abnormal activities more difficult.

Nevertheless, it is possible to implement an intelligent security system on von
Neumann's architecture considering the constraints of such design as it was shown in
Chapter 10. The advantages of this approach are that there are many protection tools
available, which can be implemented as observing or executive agents on the
execution level of an intelligent security system.

Implementing fuzzy logic wherever it is possible may circumvent the constraints
caused by binary logic. There are fuzzy expert systems described in the literature,
such as e.g. [27], which may be implemented on von Neumann's architecture. It is
possible to find solutions, which will use both binary logic (when necessary) and
fuzzy logic (whenever it is possible). The rules described in Chapter 10 may
successfully implement both types of logic. The fuzzy logic is always applied when
there are certain ambiguity about precise values, such as values of risk levels. The
binary (crisp) logic is applied where the fuzzy decision scheme is too vague.

The constraints in implementing the whole intelligent security system on single
computing system of von Neumann's type are mostly related to overall performance
and memory usage. It is possible that knowledge database might occupy too much of
memory space. The communication between different parts might put an extra load on
processing and slow down the overall performance of the computing system.
Anyway, it is possible to overcome these constraints with careful programming.

However, the main obstacle remains still the same, i.e. how to discern the abnormal
patterns from normal with elements on the execution level, where the greatest

Chapter 11 Building Secure Information Systems

11 - 2

precision is required. Although existing protection tools, which may serve as
observing or executive agents, are numerous today, very few of them are really good
in precise detection. Some of them, such as anti-virus scanners have to be updated
regularly because new computer viruses appear every day. The similar situation is
with intrusion attempts. As new versions of operating systems appear, they almost
certainly, include new security holes, which are promptly exploited by cracker's
community, usually well before the manufacturers find adequate fixes. Therefore, it is
very important that protection tools, which might be implemented as agents on the
execution level, are publicly recommended as the best in their class and that they may
be regularly updated from known and trusted source.

11.2. Networked Environments

It is easier to implement the intelligent security system in networked environment,
because its concept was from beginning aimed to be a distributed system based on
multiple entities working collectively. It is possible to integrate this system with
already existing tools for network management.

The network management is the process of controlling a complex information
network to maximize its efficiency and productivity. The International organization
for Standardization (ISO) Network Management Forum divided network management
in five functional areas:
- fault management,
- configuration management,
- security management,
- performance management,
- accounting management.
The security management may entirely be realized with an intelligent security system.

There are three main types of architectures for network management [19]: centralized,
hierarchical and distributed. There is no best architecture, because each type has
specific features that work well in certain environments. Preferable choice is to
choose the network management architecture, which most closely resembles to the
network structure.

A centralized architecture has the network management platform on one computing
system, at a location that is responsible for all network management duties. This
system uses a single centralized database. For redundancy purpose, this system is
backed up to another system in regular intervals. Having only a single management
location, security is easy to maintain. Physically the network management station can
be located in a locked and restricted access area, and the system can be set up to allow
only certain users. However, having the entire network management functions
depending on single system is somewhat inconvenient. Full backups should be
maintained; ideally at another physical location. As network elements are added, it
may be difficult and expensive to scale a single system to handle necessary load. A
significant disadvantage of this architecture is having to query all network devices
from a single location. This puts traffic load on all network links connected to the

Chapter 11 Building Secure Information Systems

11 - 3

management site and throughout the network. If the connection from the management
station to the network gets severed, all network management capabilities are lost.

A hierarchical network management architecture uses multiple systems, with one
system acting as a central server and the others working as clients. Some of the
functions of the network management platform reside within the server; others run on
the clients. The platform could use client-server database technology. The clients
would not have separate database systems but would use the central server database
accessed through the network Because of the importance of the central system in the
hierarchy, it will require backups for redundancy. The key features of the hierarchical
architecture for the network management are following:
- it is not dependent on a single system
- it has distribution of network management tasks
- network monitoring is distributed throughout network
- there is centralized information storage.
The hierarchical approach helps to alleviate one of the problems in a centralized
approach by distributing network management tasks between the central system and
the clients. Even though some of the management tasks are on clients using the
hierarchical approach, this architecture still provides for a single place to store
information about network. Because the hierarchical architecture uses multiple
systems to manage the network, there is no longer a single centralized location for
management of the entire network. This may make information gathering a bit more
difficult and time consuming. The list of devices managed by each client needs to be
logically predetermined and manually configured. Unless done carefully, this can
often lead to both the central system and a client or two monitoring the same device.
One possible consequence of this problem is the consumption of twice as much
bandwidth on the network for network management purposes.

The distributed architecture combines the centralized and distributed approaches.
Instead of having one centralized platform or a hierarchy of client-server platforms,
the distributed approach uses multiple peer platforms. One platform is the leader of a
set of peer network management systems; each individual peer platform can have a
complete database for devices throughout the entire network, which allows it to
perform various tasks and to report the results back to a central system. Because the
distributed platform combines the centralized and hierarchical approaches, it also has
the advantages of both, including:
- single location for all network information, alerts and events,
- single location to access all management applications,
- not dependent on a single system,
- distribution of network management tasks,
- distribution of network monitoring throughout the network.
Database replication server technology is very useful to this platform. A replication
server keeps multiple databases on different systems completely synchronized, which
is not a trivial task. The replication server technology for the database system is
complex. The overhead associated with this synchronization can consume
significantly more network resources than database client-server technology.

The intelligent security system may be implemented on every of three types of
network management architectures. Effective security management requires balancing
the need to secure sensitive information with the needs of users to access information

Chapter 11 Building Secure Information Systems

11 - 4

pertinent to performing their jobs. The security management involves the four main
steps:
- identifying the sensitive information,
- finding the access points,
- securing the access points,
- maintaining the secure access points.
An intelligent security system may manage all four steps. First two steps are built in
as a priori knowledge. The third step may be realized through corresponding hardware
and software. On the network level devices may secure traffic flow based on packet
filters. On every host each access point to information could have an associated
service, and each of those services that give access to sensitive information could
provide one or more types of authentication. The fourth step is implementing the
intelligent security system as it was described in previous Chapters 8 - 10.

11.3. Parallel computing systems

The overall intelligent security system's structure resembles that of a loosely coupled
parallel processing system. Therefore, the parallel computing systems are very
suitable environment where an intelligent security system may be applied.

In loosely coupled parallel systems each processor is provided by its own local
memory and often has its own set of periphery devices. Each processor is actually a
core of computing module, having significant degree of autonomy, because local
memory is able to comprehend programs and data, which are to be processed. Loosely
coupled parallel computing systems are by their structure very similar to information
networks. Therefore, the discussion of implementation of an intelligent security
system in parallel computing systems is very similar to above description of its
implementation in networked environment.

The distributed architecture of an intelligent security system was described in more
detail in Chapter 8 and shown on the figure 8.2.2. That architecture is based on the
fact that in the overall information system many intelligent systems may coexist
working independently or collectively on the same or different tasks. It is also
possible that some components work independently in the same intelligent system, but
communicate and cooperate with the components of the same level from the other
intelligent systems. This is especially true for the elements on the executive level,
where various agents may exchange their information via corresponding transceivers.

Keeping the more than one knowledge base is important for redundancy. It is possible
that one or more bases stop working for some reason. As long as there other bases
which keep the same information, the highest level of intelligence will remain
functional. Furthermore, the knowledge bases are the storage places of dynamic type,
i.e. with ability to expand during the real - time work. Therefore it is necessary that
they communicate with each other and exchange new data between themselves.

The similar reasoning may be applied for other components of an intelligent security
system. It is important to stress again that all components should have a certain degree
of autonomy and possibility of decision making depending on the level of

Chapter 11 Building Secure Information Systems

11 - 5

intelligence. These requirements are easily realized in loosely coupled parallel
computing system, where its specific architecture makes a natural environment for
implementing the intelligent security system. It would be convenient that in designing
of loosely coupled parallel computing systems the concept of an intelligent security
system is included at the beginning of design, so to assure maximal security of the
entire information system from the start.

11.4. Neural Networks

The neural networks are also a natural environment for implementing the intelligent
security system because of their main features, such as learning ability, parallelism,
self-organization and fault tolerance. These features allow neural networks to solve
various applications not handled well by current conventional computational
mechanisms. Application areas include, but are not limited to, problems requiring
learning, such as pattern recognition, control and decision systems, speech and signal
analysis, etc.

Neural networks use a different computational paradigm than conventional von
Neumann's architectures. Neural networks are composed of nodes and weighted
connections between nodes, where each node computes its output based on a function
of its weighted inputs. The overall function that a network computes is typically
changed by altering the values of the weights between nodes until the desired result is
achieved.

The basic building element of neural networks is neuron (node). The model of a
single node consists of xn inputs, which are typically Boolean or real values. The
weights ωωωωn are typically real numbers and each xj is multiplied by its corresponding
ωωωωj before entering the actual node as it is shown on the figure 11.4.1.

Figure 11.4.1. Structure of the model of node (neuron)

At the node these values are summed together giving a real valued total. The summed
total may then be the parameter of some function f whose result is the activation a of
the unit. For a simple linear unit this f is just the identity function. Common nonlinear

Chapter 11 Building Secure Information Systems

11 - 6

functions used to calculate the node activation include the threshold function, where
the output is 1 if the summed total is greater than some threshold (otherwise is 0),
sigmoid function and stochastic sigmoid function. The output o of the unit is typically
the same as the activation. However, the output may be some function F(a) of the
current activation.

The topologies into which many nodes combine to make a neural network include
feedforward, where all communication is in one direction; feedback, a feedforward
net where some outputs are connected back to previous nodes; and bi-directional,
where a connection between nodes carries input and output in both directions. Most
current bi-directional networks are symmetric, in that the weight on a line is the same
for inputs going in either direction.

The basic function of a single node, and typically of the entire network, is to classify a
set of input patterns into a set of output states. A network is trained to perform a set of
classifications by use of a training set. A training set is composed of a list of input
vectors, together with the desired output vector for each input vector, which the
network should learn. An input vector is applied at the input of a network, and the
consequent output of a network is compared with the goal output. If they are the
same, no change is made to the weights of the network. However, if the output is
incorrect the weights of the network are adjusted in a fashion, which will decrease the
magnitude of the previous error. Alternatively, presentation of training patterns could
continue until the error rate is within some set value. This method of closing in on a
desired goal through iterative changing of parameters is called convergence. One
aspect of convergence algorithms with training sets is that after weights are adjusted
to fit the current pattern, the network may then no longer correctly classify previous
patterns already presented in the set. This phenomenon is called unlearning. This is
partially the reason why it is necessary to iterate many times through the training set
before convergence to a correct network is attained.

The main advantages of implementing intelligent security system with neural
networks lay in opportunity to combine before described fuzzy expert system with the
neural networks with the goal to optimize the control parameters. Fuzzy expert
systems are designed to work with knowledge in the form of linguistic control rules.
But the translation of these linguistic rules into the framework of fuzzy set theory
depends on the choice of certain parameters for which no formal method is known.
The optimization of these parameters can be carried out by neural networks, which are
designed to learn from training data, but which are in general not able to profit from
structural knowledge.

The specification of good linguistic rules depends on the knowledge of the human
expert. But the translation of these rules into fuzzy set theory is not formalized and
arbitrary choices concerning the shape of membership functions have to be made.
Changing shapes of membership functions may drastically influence the quality of
fuzzy expert system. Thus methods for tuning fuzzy expert systems are required.

Neural networks offer the possibility to solve this tuning problem. The combination of
neural networks and fuzzy expert systems assembles the advantages of both
approaches and avoids the drawbacks of them. Although neural networks are able to
learn from given data, the trained neural network is generally understood as a black

Chapter 11 Building Secure Information Systems

11 - 7

box. Neither is it possible to extract structural knowledge from the trained neural
network, nor the special information about the problem can be integrated into the
neural network in order to simplify the learning procedure. On the other hand, a fuzzy
expert system is designed to work with knowledge in the form of rules. But there
exists no formal framework for the choice of parameters and the optimization of
parameters has to be done by hand. The proper architecture integrating the concepts of
a fuzzy expert system and neural networks may solve successfully these problems.

11.5. Quantum Computing Systems

Quantum computing is one of the latest discoveries in computer science. Quantum
computation uses microscope quantum level effects to perform computational tasks
and has produced results that in some cases are exponentially faster than their
classical counterparts.

Quantum computing makes use of coherent states to process information. Rather than
the sequential discrete logic of conventional information processing, use is made of
quantum superposition of so called qubits (the standard shortcut for "quantum binary
digit"). Computing requires adiabatic operation. Quantum computers, if they would
exist, could perform complicated tasks exponentially faster than conventional
computers. For the realization of quantum computers the emphasis has so far been on
quantum optics, using trapped atoms or ions. There two qubits have been made to
interact.

So far, quantum computing exists mostly in a number of papers with this subject. The
idea of quantum computer contains nothing really new. It is mostly re-interpretation
of very well known mathematical objects, mainly the theory of quantum two-levels
systems. Anyhow, it is possible that the future of information systems will be in
quantum computing. Therefore it is necessary to take into consideration this type of
computing when talking about future implementations of intelligent security system.
Since this field of theory is rapidly advancing it is convenient to think about the
security of such information system as they develop to avoid from the beginning the
drawbacks (regarding security requirements) of their conventional counterparts based
on von Neumann's architecture.

11.6. Other Aspects

There are few other aspects left to discussion, which were not mentioned before. It is
the issues of human interface regarding security of information systems and privacy
protection. These two topics are both wide areas for discussion and it is beyond the
scope of this thesis to go into all details.

Chapter 11 Building Secure Information Systems

11 - 8

11.6.1. Human Interface and Security of Information
 Systems

There are two ways on which the human interface and security of information can be
connected with each other. First is natural human concern that there will not be any
damage to human health due to certain parts of equipment. The other one is somewhat
different and it concerns the secure ways of user's communication with the
information systems.

The first concern is related to those parts of the information hardware and software
equipment, which could possibly endanger human health. Maybe this subject looks
unimportant at the moment, but when talking about safe computing it has to be taken
into consideration. With today's equipment it is possible to have injured backbone or
wrists, inflammation of eyes, headaches, etc.; all that as a consequence of
inadequately designed equipment. The developing techniques bring also possibilities
to endanger human health. It is especially true for virtual reality accessories, such as
helmets, gloves or eyeglasses. Maybe it is too early to say that software can endanger
human health. After all, computer viruses do not infect human beings. But, there are
some software effects, which are potentially harmful, such as high frequency blinking
or fast changing of visual effects. Such effects are possibly not harmful in usual work
with computers, but using these effects together with before mentioned virtual reality
equipment may cause different harmful effects, from benign ones, such as dizziness,
to more serious, such as epileptic attacks at persons who are prone to them. Therefore,
it would be good if manufacturers of information equipment would pay attention to
not endanger human health when developing new products.

The other concern is related to human communication with computer. Usual way of
communication today is typing at the keyboard or clicking the mouse and looking the
effects on the screen. However, there are several attempts to replace that type of
communication with voice communication, i.e. to issue the commands to computer
exclusively by voice. The potential risk in such an approach is that it could be easier
to do some damage to the system. For example, someone only passing by could erase
the complete current work of the person sitting at computer by saying one wrong
word, e.g. "Delete it." There are even worse scenarios possible. For instance, it is
enough to say three short words or sentences to do even more damage:
1. "Format C"
2. "Enter"
3. "Yes."
Every computer of today is able to understand those commands if provided by voice
driven commands. Therefore, the possible risks should be taken into consideration
when developing and implementing such tools.

The other aspect of this is that voice recognition or fingerprint recognition or iris
recognition may be used to increase security. If special demands to security of an
information system are required, the usual password schemes are not enough. The
voice recognition is somewhat vague, but fingerprint and iris recognition should be
unique for a certain person. An intelligent security system should have such specific
features built into it.

Chapter 11 Building Secure Information Systems

11 - 9

11.6.2. Privacy Protection

Privacy protection is as old as the mankind. There have always been people who
wanted to exchange information among themselves without anybody else knowing it
and other people that wanted to obtain that information. The protection of written text
can be found in various forms. Nowadays, in the information age, when most
information are electronic and travel through networks and are therefore a prey for
various attackers it is even more important to protect that information and at the same
time the privacy of the individual.

Privacy protection in terms of protection of information concerns protection of
confidential data in transport or when they are stored in system. In both cases various
methods of encryption can be used to make a document which has to be protected
unreadable for unwanted eyes. To preserve integrity of documents one can use a
digital signature to check whether a file or message has been modified. For
authentication of sender a digital signature can be used. It makes possible
mathematically verifying the name of the person who signed the message.

Cryptography is the science and art of secret writing, i.e. keeping information secret.
When applied in computing environment, cryptography can protect data against
unauthorized disclosure; it can authenticate the identity of a user or program
requesting the service or it can disclose unauthorized tampering.

Encryption is a process by which a message (called plaintext) is transformed into
another message (called ciphertext) using a mathematical function and a special
encryption password, called the key.

Decryption is the reverse process of encryption. The ciphertext is transformed back
into the original plaintext using the mathematical function and a key.

Encryption algorithm is the function, usually with some mathematical foundations,
which performs the task of encrypting and decrypting the data.

Encryption keys are used by the encryption algorithm to determine how data is
encrypted or decrypted. Keys are similar to computer passwords. When a piece of
information is encrypted, one needs to specify the correct key to access it again. But
unlike a password program, an encryption program does not compare the key
provided with the key originally used to encrypt the file and grant the access if the
two keys match. Instead, an encryption program uses the key to transform the
chipertext back into the plaintext. If the correct key is provided, the original message
is gotten back. If one tries to decrypt a file with a wrong key, he or she gets only
garbage. As with passwords, encryption keys have a predetermined length. Longer
keys are more difficult for an attacker to guess than shorter ones because there are
more of them to try in a brute-force attack. Different encryption systems allow using
of different lengths.

Different forms of cryptography are not equal. Some systems are easily circumvented
or broken. Others are quite resistant to even the most determined attack. The ability of
a cryptographic system to protect information from attack is called its strength.
Strength depends on many factors including:

Chapter 11 Building Secure Information Systems

11 - 10

- the secrecy of the key;
- the difficulty of guessing the key or trying out all possible keys (a key search),

longer keys are generally harder to guess or find;
- the difficulty of inverting the encryption algorithm without knowing the

encryption key (breaking the encryption algorithm);
- the existence (or lack) of back doors, or additional ways by which an encrypted

file can be decrypted more easily without knowing the key;
- the ability to decrypt an entire encrypted message knowing the way that a portion

of it decrypts (called a known text attack);
- the properties of the plaintext and knowledge of those properties by an attacker

(for example, a cryptographic system may be vulnerable to attack if all messages
encrypted with it begin or end with a known piece of plaintext).

The goal in cryptographic design is to develop an algorithm that is so difficult to
reverse without the key that is at least roughly equivalent to the effort required to
guess the key by trying possible solutions one at a time. When one protects
information by encryption, the secrecy of the key, the strength of the encryption
algorithm and the particular encryption implementation used protect the information.
Although someone can access the encrypted file, he or she cannot decrypt the
information stored inside the file.

There are two basic kinds of encryption algorithms in use today:

- Private key cryptography, which uses the same key to encrypt and decrypt the
message. This type is also known as symmetric key cryptography.

- Public key cryptography, which uses a public key to encrypt the message and a
private key to decrypt it. The name public key comes from the fact that one can
make the encryption key public without compromising the secrecy of the message
or the decryption key. Public key systems are also known as asymmetric key
cryptography.

The private key systems in common use today are: crypt, DES, RC2, RC4, RC5,
IDEA, Skipjack. The public key systems in common use today are: Diffie-Hellman,
RSA, ElGamal, DSA.

The intelligent security system should certainly have some sort of built in privacy
protection, at least in transferring the information between its various parts.

Chapter 11 Building Secure Information Systems

11 - 11

Chapter 12 Summary and Conclusions of Part II

12 - 1

12. SUMMARY AND CONCLUSIONS OF
 PART II
Part II, Building Secure Information Systems, looked at the ways how to build an
intelligent security system and how to implement it in current and future information
systems so to obtain maximum security.

12.1. Summary

The Chapter 7, What is Secure Information System?, presented the semantic
definition of information, discussed what is secure information and gave the definition
of secure information system.

When trying to define information semantically we have to include an observer
(human being or physical device). Using this concept, the static and dynamic semantic
definitions of the information were given. The four axioms, which describe the
process of observation, were also presented.

Observation of uncertainties in information was described too. It was supposed that is
possible to determine uncertainty by Shannon's differential entropy.

The security of information was defined through confidentiality, integrity and
availability of information. Confidentiality means controlled release of information
and protection from unauthorized access. Integrity represents the control of
modifications and correct and authorized information transaction. Availability means
that information is available when required and that the denial of service will not
occur. The security of information was also expressed through four axioms, which
describe the process of information, adding the fifth axiom, which says that if an
unauthorized modification of information occurs, then the observer must be able to
notice and (possibly) correct unwanted modifications.

The introduction of Axiom 5. requires a new quality of protection tool. It is not
enough that tool is automated and adaptive (to avoid user's mistakes). The tool should
behave as an intelligent observer, capable to recognize "abnormal" patterns in
information flow. It should also have ability of making some decisions and to be able
to completely reconstruct the information before unauthorized modification.

In the Chapter 8, An Architecture for Intelligent Security System, the architecture for
a distributed intelligent system was introduced. The system is based on multiple
independent entities working collectively. The main components of such a system are:

- knowledge base, which stores the facts (events) from its environment and
inference rules

- inference engine, which is responsible for making decisions and performing
reasoning

- knowledge acquisition subsystem which collects the information from observing
elements and transfers it to knowledge base

Chapter 12 Summary and Conclusions of Part II

12 - 2

- adaptation subsystem which transfer the decisions from inference engine to
executive elements

- observing elements which collect the information from the environment and
transfer it to knowledge acquisition system

- executive elements which perform required changes to environment

The architecture of an intelligent system can be presented in two ways: logical
architecture and physical architecture. The logical architecture is to be structured
hierarchically in the order of increasing precision with decreasing intelligence. The
highest level of intelligence is the organization level where main decisions and rules
are generated. The second level is coordination level, which connects the organization
and execution levels. Finally the third level, which has the smallest intelligence, is the
execution level where concrete actions are performed. Physical architecture is
distributed architecture. The overall system structure resembles that of a loosely
coupled parallel processing system.

The components of intelligent system architecture were presented beginning from the
lowest level of intelligence, transferring through the higher levels of intelligence and
getting back again to the lower levels of intelligence. The communication
mechanisms between the levels and general performance of the entire system were
presented too.

In the Chapter 9, Modeling an Expert System, the theoretical models for the expert
system of an intelligent security system were introduced. It was stated in the Chapter
5 that binary logic is an obstacle for present security tools. While it makes computing
easy, it can be a drawback considering security requirements. For that reason, the
other types of logic, such as fuzzy logic, were taken into consideration.

The main concepts of fuzzy logic were presented, such as: fuzziness, crisp and fuzzy
sets, degree of membership, truth function, hedges, fuzzy numbers and fuzzy
operators, min - max rule, and general concept of rules.

Designing of the fuzzy expert system was described. In designing a fuzzy expert
system there are some other aspects to be considered. There are several choices for
the input data, breaking down into two categories: crisp (non-fuzzy) or fuzzy. The
operation on input data, which is very interesting for an expert system, is comparison,
because the rules will be often based on comparisons of the input data to values. If the
input data are strings, the only comparison, which can be made is crisp (non-fuzzy)
checking of two strings for equality or inequality. If the input data are numbers, the
comparison may be crisp or fuzzy.

The rule - based reasoning was introduced as well as reasoning patterns and rule -
firing schemes. The formalism used by fuzzy expert production systems is a set of
rules of the type:

IF (certain specified patterns occur in the data)
THEN (appropriate actions are to be taken, including modifying old data or
 asserting new data)

Chapter 12 Summary and Conclusions of Part II

12 - 3

The IF part of the rule (left-hand side of the rule) is known technically as the
antecedent or LHS. The THEN part of the rule (right-hand side of the rule) is called
the consequent or RHS. The antecedent consists of tests to be made on existing data.
The consequent holds actions to be taken if the data pass the tests in the antecedent.

A rule is fireable if the data yield an antecedent confidence above the rule firing
threshold. To be actually fired, the rule must also be turned on for firing and the rule
must be picked for firing.

The methods of fuzzification and defuzzification were explained too. Fuzzification is
the process of translation of input numbers into confidences in a fuzzy set of word
descriptors. Defuzzification is the reverse process of fuzzification.

In the chapter 10, Implementing an Intelligent Security System, the implementation
of an intelligent security system was presented.

The implementation of an intelligent security system was carried out on the basis of
the concept presented in Chapter 8 and theoretic framework presented in Chapter 9
The main goal is to emulate an intelligent reaction to "suspicious" actions, which
might occur in the information system. The prototype presented in this chapter was
mainly developed for protection from computer viruses, worms and Trojan horses, but
it is intended to be expanded to other types of misuse of information systems in near
future.

The working name of prototype was chosen to be Nisan, which is the name of
historically first month of the Hebrew calendar. The prototype Nisan was mainly
developed on Unix platform (Solaris 2.7), but its executive parts are situated on MS
Windows 98/NT platform. The main programming language was Tcl, version 8.0.

The prototype was developed in the way to emulate two hosts sending reports to
central host for analysis. Emulation on Unix system is based on inter-processes
communication and it is carried out by sharing directories and files. The way of
implementation is data flow between the processes. The structure of directories
corresponds to the modules described in Chapter 8, so that most often particular
directory has name corresponding to its concept counterpart. It is supposed that some
modules will be physically placed to different hosts, so they also have names of hosts
attached to the name of module.

The executable programs are executed sequentially, one by one, but it is intended to
work as daemons in future (constantly present programs). Their functioning is easily
checked by logs in check directories. If the message (input file) is processed already
its name is recorded in check log, so it will not be processed again. For every
executable program there is dedicated library in directory lib. Method of naming is
code_name-of-module, e.g. code_filter_1.tcl.

Messages are mostly text files, which are processed by programs and transferred to
corresponding directories. All messages have standardized name format :
TYPE_TIME-STAMP_HOST(if needed, otherwise "-")_NAME-OF-
MODULE.EXT
where TYPE is an abbreviation of the name of the attack type, e.g. VIR for viruses.

Chapter 12 Summary and Conclusions of Part II

12 - 4

Observing elements on every host consists of three types of elements,which is
somewhat different from the concept presented in Chapter 8,: observing agents,
corresponding filters and observing transceivers. Observing agents in this case were
anti-virus scanner F-Secure for Windows 95 version 4.09.2220. and integrity checker
Integrity Master version 4.21 a, both trial versions.

Some of reports from agents can be very verbose, which might be good for individual
use, but is an obstacle for automated processing of reports. Therefore, first step was to
build corresponding filters for every type of reports, which will convert so different
formats into standardized formats, that can be used in further processing.

The main task of observing transceivers was to collect outputs from filters, sort them
by time sequence and according to that condition concatenate records from two
different filters for scanner, giving that way the complete presentation of certain
event. The reports from integrity checker were simply added to the other reports. An
additional record was added to starting sequence, i.e. the “weight” of event according
to scanning or integrity checking results.

The elements of knowledge acquisition subsystem are controllers for different types
of attacks, coordinators and dispatcher. The controllers were developed in the way as
they physically reside on corresponding host, together with observing elements. The
main function of a controller is to select the events for which it is designated by
priorities. Priorities were given in some way by transceiver in previous step. The main
task of coordinator is to merge reports from controllers residing on different hosts for
given type of event (in this case it is event “virus”). Its task is also to sort the reports
by importance of hosts. The main task of dispatcher is to supervise coordinators for
different events, collect reports from them and sorts them by importance.

The elements of organization level are knowledge database, unit of inference rules,
problem description unit, problem status unit, reasoning unit and explanation unit.
Knowledge database of known regular and irregular events for event "virus" is stored
in directory /etc/knowledge_database. Its records show all possible outputs from
scanner and integrity checker, together with associated risk and priority.

The unit of inference rules contains a priori built rules for handling various levels of
scanning and integrity checking risk. According to these rules the particular plan of
actions is chosen. There are basically two fuzzy experts, one for risk evaluation and
the other for plan calculation. They had to be separated because of fuzzy engine
implementation. It was impossible to have same variables on the both sides of the
rules, so there are almost same rules for risk evaluation and an extended set of rules
for plan calculation. The output from unit of inference rules is quite simple. It gives
the type of event (VIR in this case), the name of unit which gave last report, time
stamp, number of chosen plan (rounded because evaluation gives real value), and
corresponding values of Scanning_Risk and IntChecking_Risk.

Reasoning unit is realized by program resoning_unit.tcl, placed in directory /bin. It
reads the output from inference rules unit from /problem_status and calls procedure
code_pcplan.tcl from /lib, which according to obtained result from inference rules
unit, extracts corresponding plan with its commands. In this case command is simple

Chapter 12 Summary and Conclusions of Part II

12 - 5

a call of particular batch file plan*.bat, which will be executed later. Explanation unit
serves here as a store place from which particular plan will be read.

The implementation of adaptation unit was very simple. Because all relevant
decisions were practicaly made at organization level, mostly by inference rules unit,
there were no need for the purposes of this prototype to introduce additional criterion
of adaptation. It is intended, however, to be implemented in some future realizations
where more active feedback between various parts of this system will be included.
Only one of modules from adaptation subsystem, the regulator, was realized as its
executive module. In this version it simply transferred the output from
/explanation_unit directory to its output directories /output_glavni and
/output_virusi for further processing.

The executive level consists of executive transceivers and executive agents. The
executive transceiver translates the directions from the regulator to instructions
understandable by executive agent. For the purposes of this development the
transceiver was realized as a group of simple batch files corresponding to particular
plans. The examples of batch files were adapted for the specific platform and agents,
which were available for this development. The executive agents were the same as
observing agents, i.e. scanner F-Secure and integrity checker Integrity Master.

In the Chapter 11, Building Secure Information Systems, the ways for building
secure information systems with an intelligent security system were described. Some
other aspects of information security, such as human interface and privacy protection,
were briefly introduced.

The majority of today's information systems are implementing computing systems
based on von Neumann's architecture. The main characteristics of that architecture
were presented in Chapter 1. The drawbacks of such architecture regarding security
requirements were summarized in Chapter 5. Nevertheless, it is possible to implement
an intelligent security system on von Neumann's architecture considering the
constraints of such design. The advantages of this approach are that there are many
protection tools available, which can be implemented as observing or executive agents
on the execution level of an intelligent security system. The constraints in
implementing the whole intelligent security system on single computing system of
von Neumann's type are mostly related to overall performance and memory usage.

It is easier to implement the intelligent security system in networked environment,
because its concept was from beginning aimed to be a distributed system based on
multiple entities working collectively. It is possible to integrate this system with
already existing tools for network management.

The network management is the process of controlling a complex information
network to maximize its efficiency and productivity. The International organization
for Standardization (ISO) Network Management Forum divided network management
in five functional areas:
- fault management,
- configuration management,
- security management,
- performance management,

Chapter 12 Summary and Conclusions of Part II

12 - 6

- accounting management.
The security management may entirely be realized with intelligent security system.

There are three main types of architectures for network management: centralized,
hierarchical and distributed. There is no best architecture, because each type has
specific features that work well in certain environments. Preferable choice is to
choose the network management architecture, which most closely resembles to the
network structure.

The overall intelligent security system's structure resembles that of a loosely coupled
parallel processing system. Therefore, the parallel computing systems are very
suitable environment where an intelligent security system may be applied.

In loosely coupled parallel systems each processor is provided by its own local
memory and often has its own set of periphery devices. Each processor is actually a
core of computing module, having significant degree of autonomy, because local
memory is able to comprehend programs and data, which are to be processed. Loosely
coupled parallel computing systems are by their structure very similar to information
networks. Therefore, the discussion of implementation of an intelligent security
system in parallel computing systems is very similar to above description of its
implementation in networked environment.

The neural networks are also a natural environment for implementing the intelligent
security system because of their main features, such as learning ability, parallelism,
self-organization and fault tolerance. These features allow neural networks to solve
various applications not handled well by current conventional computational
mechanisms. Application areas include, but are not limited to, problems requiring
learning, such as pattern recognition, control and decision systems, speech and signal
analysis, etc.

Neural networks use a different computational paradigm than conventional von
Neumann's architectures. Neural networks are composed of nodes and weighted
connections between nodes, where each node computes its output based on a function
of its weighted inputs. The overall function that a network computes is typically
changed by altering the values of the weights between nodes until the desired result is
achieved.

The main advantage of implementing intelligent security system with neural networks
lay in opportunity to combine before described fuzzy expert system with the neural
networks with the goal to optimize the control parameters. Fuzzy expert systems are
designed to work with knowledge in the form of linguistic control rules. But the
translation of these linguistic rules into the framework of fuzzy set theory depends on
the choice of certain parameters for which no formal method is known. The
optimization of these parameters can be carried out by neural networks, which are
designed to learn from training data, but which are in general not able to profit from
structural knowledge.

Quantum computing is one of the latest discoveries in computer science. Quantum
computation uses microscope quantum level effects to perform computational tasks
and has produced results that in some cases are exponentially faster than their

Chapter 12 Summary and Conclusions of Part II

12 - 7

classical counterparts. So far, quantum computing exists mostly in a number of papers
with this subject. Anyhow, it is possible that the future of information systems will be
in quantum computing. Therefore it is necessary to take into consideration this type of
computing when talking about future implementations of intelligent security system.
Since this field of theory is rapidly advancing it is convenient to think about the
security of such information system as they develop to avoid from the beginning the
drawbacks (regarding security requirements) of their conventional counterparts based
on von Neumann's architecture.

There are few other aspects left to discussion, which were not mentioned before. It is
the issues of human interface regarding security of information systems and privacy
protection.

There are two ways on which the human interface and security of information can be
connected with each other. First is natural human concern that there will not be any
damage to human health due to certain parts of equipment. The other one is somewhat
different and it concerns the secure ways of user's communication with the
information systems.

Privacy protection in terms of protection of information concerns protection of
confidential data in transport or when they are stored in system. In both cases various
methods of encryption can be used to make a document which has to be protected
unreadable for unwanted eyes. To preserve integrity of documents one can use a
digital signature to check whether a file or message has been modified.

The intelligent security system should certainly have some sort of built in privacy
protection, at least in transferring the information between the various parts.

12.2. Conclusions

The Part II describes the ways on how to build secure information systems. The
suggested basis of the secure information system is an intelligent security system. The
term "intelligent" in the name of this security system does not indicate that the other
security systems are non-intelligently constructed or designed. It simply means that
this security system should have some intelligent capabilities such as:
- the ability to learn or understand from experience
- the ability to acquire and retain knowledge
- the ability to respond quickly and successfully to a new situation
- the ability to make proper decisions, etc.

The main goal of so proposed intelligent security system is to emulate an intelligent
reaction to any suspicious action, which might occur in the information system. For
that purpose it has its "brain" in the form of fuzzy expert system consisting of the
knowledge base and inference engine, its adaptation subsystem to be able to adapt to
possibly harmful changes in its environment, its knowledge acquisition subsystem to
expand its overall "knowledge", its "eyes" and "ears" in the form of observing
elements and executive elements to perform the required actions.

Chapter 12 Summary and Conclusions of Part II

12 - 8

It was shown that this intelligent system can be implemented in various kinds of
current and future architectures considering corresponding advantages and
constraints. It is supposed that realization of such an intelligent security system in any
kind of information structures would be great advantage in the security of information
systems.

PART THREE

Chapter 13 Summary, Conclusions and Further Work

13 - 1

13. SUMMARY, CONCLUSIONS AND
 FURTHER WORK
In this final chapter the summary and conclusions of the whole thesis will be given as
well as directions for further work.

13.1. Summary

In Chapter 1, Information Systems, the concepts of information, information system,
computing system, information network and Internet were presented. The information
could be represented by functional relation of probability, under assumption that
information increases when probability of the event decreases and vice versa. General
information system consists of the source of information, encoder of information,
communication (transmission) channel, decoder and receiver of information.

In Chapter 2, Misuse of Information Systems, some of the attacks to the information
systems were described in more detail. We may consider the attacked information
system as a system with errors. However, it is important to stress that this type of
“errors” is not usual random errors (noise) or “bugs” in the programs which might
appear normally in information systems. These “errors” are deliberately imported into
system. Anyway, for the clarity of explanation, we considered them in the discussion
as a noise in communication. The usual term used for this type of errors is threats to
information systems.

In Chapter 3, Programmed Threats, some of numerous programmed threats were
presented. There are two types of such threats:
- non-reproducing threats that do not have built-in ability to replicate themselves
- self-reproducing threats that do have built-in ability to replicate themselves
There are various types of non-reproducing threats ranging from trap or back doors,
timing and buffer overflow attacks, session hijacking and tunneling to Trojan horses,
logical or timing bombs and programmed denial of service attacks. The most known
representative of self – reproducing threats is computer virus.

Chapter 4, Protection of Information Systems, described today’s methods of
protection of information systems. Today’s protection of information systems can be
roughly divided in two important areas: prevention and active protection. Prevention
includes all measures to be taken before a security incident happens. Active protection
includes tools and methods for real – time protection. Two types of protective tools
were presented in this Chapter: non - adaptive and adaptive automated protective
tools. Automatization of the protection systems and using adaptiveness allows easy
handling (user friendliness) and can reduce error level. Adaptiveness is the ability of a
system to adapt to changes that could significantly influence the existence of the
system. The approximate model of an automated adaptive protection system was
presented.

Chapter 13 Summary, Conclusions and Further Work

13 - 2

Chapter 5, Vulnerabilities of Present Protection Systems, provided an overview of
the vulnerabilities of today’s protection systems and inherent security flaws in today’s
computing systems.

Chapter 6, Summary and Conclusions of Part I, presented short summary and
conclusions of Part I of the thesis.

The Chapter 7, What is Secure Information System?, presented the semantic
definition of information, discussed what is secure information and gave the definition
of secure information system.

In the Chapter 8, An Architecture for Intelligent Security System, the architecture for
a distributed intelligent system was introduced. The system is based on multiple
independent entities working collectively. The main components of such a system are:
knowledge base, inference engine, knowledge acquisition subsystem, adaptation
subsystem, observing elements and executive elements. The architecture of an
intelligent system can be presented in two ways: logical architecture and physical
architecture. The logical architecture is to be structured hierarchically in the order of
increasing precision with decreasing intelligence. Physical architecture is distributed
architecture. The overall system structure resembles that of a loosely coupled parallel
processing system.The components of intelligent system architecture were presented
beginning from the lowest level of intelligence, transferring through the higher levels
of intelligence and getting back again to the lower levels of intelligence.

In the Chapter 9, Modeling an Expert System, the theoretical models for the expert
system of an intelligent security system were introduced. It was stated in the Chapter
5 that binary logic is an obstacle for present security tools. While it makes computing
easy, it can be a drawback considering security requirements. For that reason, the
other types of logic, such as fuzzy logic, were taken into consideration. The main
concepts of fuzzy logic were presented, such as: fuzziness, crisp and fuzzy sets,
degree of membership, truth function, hedges, fuzzy numbers and fuzzy operators,
min - max rule, and general concept of rules. Designing of the fuzzy expert system
was described. The rule - based reasoning was introduced as well as reasoning
patterns and rule - firing schemes. The methods of fuzzification and defuzzification
were explained too.

In the chapter 10, Implementing an Intelligent Security System, the implementation
of an intelligent security system was presented. The main goal of the intelligent
security system would be to assure the lowest level of the risk for the entire
information system. If the level of risk increases, the actions should be taken to make
it lower. The implementation of an intelligent security system was carried out on the
basis of the concept presented in Chapter 8 and theoretic framework presented in
Chapter 9. The main goal was to emulate an intelligent reaction to "suspicious"
actions, which might occur in the information system. The prototype presented in this
chapter was mainly developed for protection from computer viruses, worms and
Trojan horses, but it is intended to be expanded to other types of misuse of
information systems in near future. The implementation of all levels of intelligence
were presented in more detail.

Chapter 13 Summary, Conclusions and Further Work

13 - 3

In the Chapter 11, Building Secure Information Systems, the ways for building
secure information systems with an intelligent security system were described. Some
other aspects of information security, such as human interface and privacy protection,
were briefly introduced. The implementation of intelligent security system on
computing systems based on von Neumann's architecture was explained. Its
implementations in networked environment, in loosely coupled parallel systems, in
combination with neural network and in quantum computing system were described
too. The few other aspects, such as the issues of human interface regarding security of
information systems and privacy protection were also discussed.

Chapter 12, Summary and Conclusions of Part II, presented short summary and
conclusions of Part II of the thesis.

13.2. Conclusions

The Part I describes security problems in today’s information systems. They are
numerous because today’s information systems were not built with security
requirements from the beginning. There are also many protection tools, which are
designed to protect more or less efficiently information systems from malicious
activities. However, even the best protection systems have their vulnerabilities.

The security weaknesses include the very basics of today’s computing and network
systems, such as binary logic and von Neumann’s architecture. The universality of
von Neumann’s architecture, which is very convenient from the user’s point of view,
is inconvenient regarding security requirements. It is important to stress that anything,
which can be programmed, may be programmed to perform malicious activities in the
system and it is very difficult to discern such an attempt from the “normal” activities
before some damage is done.

Binary logic is a basic of today’s computing, i.e. everything is performed through the
sequences of zeros and ones. While it makes computing easy, it is an obstacle
considering security requirements for exact pattern recognition. Although there are
the methods to circumvent this inconvenient bound, it still remains the problem,
which can be solved in satisfactory way by changing the binary logic to multivalued
logic.

Having in mind these two major obstacles to information systems security, in the
Part II of the thesis some other possibilities in the logic and architecture were offered
so to have security requirements built from the start in information systems.

The Part II describes the ways on how to build secure information systems. The
suggested basis of the secure information system is an intelligent security system. The
term "intelligent" in the name of this security system does not indicate that the other
security systems are non-intelligently constructed or designed. It simply means that
this security system should have some intelligent capabilities such as:
- the ability to learn or understand from experience
- the ability to acquire and retain knowledge

Chapter 13 Summary, Conclusions and Further Work

13 - 4

- the ability to respond quickly and successfully to a new situation
- the ability to make proper decisions, etc.

The main goal of so proposed intelligent security system is to emulate an intelligent
reaction to any suspicious action, which might occur in the information system. For
that purpose the prototype with working name Nisan was developed and it was
presented in detail. It was shown that realization of theoretical concept presented in
Chapter 8 is possible and that it gives satisfying results, even in this early phase of
development.

It is shown that this intelligent system can be implemented in various kinds of current
and future architectures considering corresponding advantages and constraints. It is
supposed that implementation of such an intelligent security system in any kind of
information structures would be great advantage in the security of information
systems.

13.2.1. The Contributions of the Thesis

The main contributions of this thesis to the field of security of information systems
are the following:

- an attempt to cover very various and wide areas of this field into unique whole,
- a model of adaptive automated protection thesis is a contribution to the field,

although existing at the moment only as a concept
- a prototype of an intelligent security system is also an original contribution to the

field; its concept being the result of practical work on security problems during
the years and developed in hope to significantly improve the security of
information systems today and in the future. According to information available to
author no similar system is being developed or in process of development.

13.3. Further Work

The field of information security is still very wide area for exploration. It is a complex
field, which demands knowledge of multiple disciplines. Today is not sufficiently to
be familiar with technical aspects and problems only. The domain of information
security needs also specific comprehension of psychological, social, legal, even
biological aspects.

The communication with the experts from various fields is very important. There is
not adequate cooperation of security experts with the experts from other fields. That
situation should be improved in the future.

The field of information security is rapidly changing. Every day new computer
viruses are written, new security holes are found and exploited. One has to collect an
enormous quantity of technical data to be well informed. It is not an easy task to do,
but is necessary. Furthermore, the information technology itself is changing rapidly.

Chapter 13 Summary, Conclusions and Further Work

13 - 5

New developments bring new benefits, but they also may reveal new vulnerabilities.
The necessity is to be always "one step forward", i.e. to be faster in revealing and
eliminating new vulnerabilities than attackers. It is sometimes difficult, but it is very
challenging task.

The domain, which is also changing fast, is the legislation regarding information
technology crimes. One should be informed about laws in different countries, because
the information crime knows no physical borders. It is possible via today's
information networks (especially via Internet) to live in one country and to commit
the crime in another country. The computer emergency response teams (CERTs)
know this problem very well. Although, the corresponding laws are still somewhat
vague and often uncertain it is necessary to apply them whenever it is possible.

Further work in this domain should be done on gathering of all mentioned specific
areas of expertise into further development of one or more intelligent systems. After
all, on the "other side" of information security, i.e. on the side where attacks to
security are invented and performed, are the real people. To their destructive
intelligence it is possible to oppose only the constructive intelligence, the intelligence
which will build and develop new systems for the benefit of the mankind.

Chapter 13 Summary, Conclusions and Further Work

13 - 6

 Appendix A

A - 1

APPENDIX A

Glossary of Used Terms
This glossary of used terms is not composed alphabetically, but is formed of the terms
as they appeared in particular chapters.

Chapter 1

Information - represents the degree of freedom in choice of message from the set of all
possible messages. In the essence of the very concept of information there is some uncertainty
included, which is eliminated by receiving the information. The information could be
represented by functional relation of probability under assumption that information increases
when probability of the event decreases and vice versa.

Information system - consists of the source of information, encoder of information,
communication (transmission) channel, decoder and receiver of information.

Transinformation - is quantity of information transmitted through the communication
channel with errors.

Information network - is set of devices and programmable elements, which perform
operations of transmission, commutation and processing. The devices and
programmable elements are mutually connected with fixed or variable connections to
form the system, which performs requested information services.

Transmission - is a transfer of particular quantity of information between the
determined points of the information space.

Commutation - is directing (routing) information units to determined paths, which
 interconnect points of the information space.

Processing - is performing specific algorithms, defined by programming language, to
change the contents of information units.

Internet - is the term used to denote a collection of packet switching information
networks interconnected by gateways and routers along with protocols that allow
them to function logically as a single, large, virtual network.

Protocol - is a formal description of message formats and the rules two or more
machines must follow to exchange those messages.

Internet protocol (IP) - is a standard protocol that defines the IP datagram as the unit
of information passed across an Internet and provides the basis for connectionless,
best-effort packet delivery service.

 Appendix A

A - 2

Internet services - are a set of application programs that use the network to carry out
useful communication tasks. The most popular and widespread Internet application
services include: electronic mail, file transfer, remote login, etc.

Chapter 2

Threats - is the term for the “errors”, which are deliberately imported into system.

Denial of service - means shutting down the service or slowing it significantly

Vulnerabilities in Internet services - are security holes on application or network
level of Internet services, which may be used to break into the system.

Vulnerabilities in network level services - are security flaws inherent in the TCP/IP
protocol suite. Some of these flaws exist because hosts rely on IP source address for
authentication; other exist because network control mechanisms, and in particular
routing protocols, have minimal or non-existent authentication.

Vulnerabilities in application level services - are security holes on application level,
which can be used for different kind of attacks, ranging from gaining information
about the system, getting access to the system to the more sophisticated attacks.

Programmed threats - are the programmed form of attacks, such as Trojan horses,
logic or time bombs, computer viruses or worms. In fact, all attempts to penetrate into
the system may be done also by programs.

Chapter 3

Software attacks - are programmed threats to information security.

Non-reproducing threats - are the threats that do not have built-in ability to replicate
themselves.

Self-reproducing threats - are the threats that do have built-in ability to replicate
themselves.

Trap door - is a quick way into a program; it allows program developers to bypass all
of the security built into the program, now or in the future.

Session hijacking - is reconnecting to the terminated session.

Tunneling - is use of one data transfer method to carry data for another method. It is
illegitimate when it is used to carry unauthorized data in legitimate data packets.

Buffer overflow attacks - happen when attacker tries to put more data into a buffer
than it can handle. When buffer overflow occurs, overload characters are put
somewhere in memory, at another address (an address the programmer did not intend

 Appendix A

A - 3

for those characters to go). Attackers, by manipulating where those extra characters
end up, can cause arbitrary commands to be executed by the operating system.

Trojan horse - is the method for inserting instructions in a program so that program
 performs an unauthorized function while apparently performing a useful one.

Logic bomb - is a harmful program that is triggered by a certain event or situation.

Computer virus - is a sequence of symbols. A sequence of symbols v is an element of
viral set V if, when interpreted, it causes some other element v’ of that viral set to
appear somewhere else in the system at the later point of time. The most common
definition is: a virus is a program that can infect other programs by modifying them
to include, a possibly evolved, version of itself. The infection process is the most
distinguishable property of the computer virus.

Boot sector viruses - alter the program that is in the first sector (boot sector) of every
DOS-formatted disk. Generally, a boot sector infector executes its own code, which
usually infects the boot sector or partition sector of the hard disk, then continues the
PC start – up process.

File viruses - attach themselves to a file, usually an executable application. A file
virus infects other files when the program to which is attached is run.

Multipartite viruses - infect boot sectors and files. Typically, when an infected file is
executed, it infects the hard disk boot sector or partition sector, and thus infects
subsequent floppy disks used or formatted on the target system.

Macro viruses - infect data files, which contain embedded executable code such as
macros. They typically infect global settings files such as Word templates so that
subsequently edited documents are contaminated with the infective macros.

Stealth viruses - have ability to conceal their presence from anti-virus programs.

Polymorphic viruses - are viruses that cannot be detected by searching for a simple,
single sequence of bytes in a possibly infected file, since they change with every
replication.

Companion viruses - are viruses that spread via a file, which runs instead of file the
user intended to run, and then runs the original file.

Worm - is a special species of a virus which spreads through networked systems.

Chapter 4

Prevention - is the most important part of overall information protection framework.
It includes some non – technical methods such as establishing security policy, security
standards, defining security procedures, education and training, regular checking of

 Appendix A

A - 4

employees and equipment, raising the level of knowledge of existing laws concerning
computer crime.

Active protection - means to apply in real conditions all the measures defined by
security policy, standards and procedures. In general, active protection consists of
network and Internet security, system and applications protection, incident response
and implementing laws concerning computer crime.

Network and Internet security - includes protection of communication devices such
as modems, controlling access to servers, network monitoring, network scanning,
securing network services, securing network configuration, filtering network traffic
(routers, firewalls).

Securing modems is one of the important steps in securing information inside an
organization and elsewhere. The first step to protect modems is their physical
protection, i.e. placing them in a physically secure location. They should be protected
from rewiring or altering. Further, their telephone numbers should be protected and
monitored. The modem access should be authorized allowing that way easier tracing
of an intruder.

Scanner is a program that automatically detects security weaknesses in a remote or
local host. Most of the scanners are TCP ports scanners, which are programs that
attack TCP/IP ports and services, such as telnet or ftp, and record the response from
the target.

Firewall - is a protecting tool, which control the amount and kinds of traffic between
the external and internal network of organization. Network - level firewalls are router
based. The rules of who and what can access the network is applied at the router level.
This scheme is applied through a technique called packet filtering, which is the
process of examining the packets that come to the router from the outside world. The
other type of firewall is an application gateway. Application gateways are software
based. When the remote user contacts a network running an application gateway, the
gateway blocks the remote connection. Instead of passing the connection along, the
gateway examines various fields in the request. If these meet a set of predefined rules,
the gateway creates the bridge between the remote host and the internal host.

Sniffer - is any device, whether software or hardware, that collects information
traveling along a network. That network could be running any protocol: Ethernet,
TCP/IP, IPX, or others (or any combination of these). Attackers to information system
more often use sniffers, but if they are used properly they may be used for the
network traffic control.

Auditing and logging tools - are tools suitable for system monitoring, access control,
and checking security holes in the system.

Intruder detector - is a system, which observes user behavior on a monitored
computer system and learns what is normal for individual users, groups of users and
the overall system behavior. Observed behavior is marked as a potential intrusion if it
deviates significantly from the expected behavior.

 Appendix A

A - 5

Applications protection - means use of legal software, anti-virus protection, and
regular installing of patches and fixes to remove existing security holes.

Activity monitor is anti-virus program that watches for suspicious activities in
computer system. It may, for example, check for any calls to format a disk or attempts
to alter or delete a program file while a program other than the operating system is in
control. It may further check for any program that performs “direct” activities with
hardware, without using the standard system calls.

Integrity checkers or change detectors - are programs that examine system and/or
program files and configuration, store the information, and compare it against the
actual configuration at a later time. Most of these programs perform a checksum or
cyclic redundancy checks (CRC) that will detect changes to a file even if the length is
unchanged. Some programs will use sophisticated encryption techniques to generate a
signature, which may in some extent prevent the virus attack.

Anti-virus scanners - are programs that looks for known viruses by checking for
recognizable patterns (“scan strings”, “search strings”, “signatures”). They examine
files, boot sectors and memory for evidence of viral infection. These programs
generally look for sections of program code that are known to be in specific viral
programs, but not in most other programs.

Adaptive systems - are systems that receive information about their environment and
about the desired behavior of the system. On the basis of that information the system
can change the performance of system till (ideally) the real behavior of system
corresponds to the desired one.

Adaptive automated protection systems - are protection systems, which consist of:
information system, which is to be protected, observing elements, model of desired
behavior (security model), adaptive mechanism and regulator.

Adaptive mechanism - is a component of adaptive automated protection system,
which consists of: recognition element, knowledge database, criterion element and
adaptive element.

Regulator - is a component of adaptive automated protection system, which keeps
information system in standard (“regular”) state of performance according to
information given from the adaptive mechanism. It activates observing elements.
Furthermore, regulator performs the routines for reconstruction of “normal” state of
the computer system.

Chapter 5

Controllability problems - are a set of problems, which appear in the use of
conventional protection tools due to "human factor". The users implementing
particular protection tool do not have to be skilled enough to use it optimally.
Furthermore, they do not have to be skilled enough to understand the output signals
from the protection tools, so they may act in an inappropriate way which may

 Appendix A

A - 6

consequently produce more damage than malicious act (an intrusion or infection by
computer virus) itself.

Technical problems - are a set of problems, which appear in the use of automated
adaptive protection tool. To improve the control ability of a protection tool it is
necessary to reduce the user’s impact on the regulation process and to decrease error
level. Both goals are possible to obtain by automating the process and using adaptive
control described earlier in Chapter 4. Anyway, even that solution has several
technical problems in practical implementations. The most important ones are the
problems in choice of security model and criterion of adaptation, recognition
problems and performance problems.

Inherent vulnerabilities - are a set of inherent vulnerabilities, which exist in today's
computing systems and represent the obstacles in production of protection tools.

Chapter 7

Semantic definition of information - is the definition of information, which includes
an observer (human being or physical device). The static definition includes the
relation between the space of symbols (syntactic space) and the space of meanings
(semantic space). The dynamic definition includes also the process of observation.
There are four axioms, which describe the process of observation. It is possible to
determine uncertainty of observation by Shannon's differential entropy.

Information security - is characterized through confidentiality, integrity and
availability of information.

Confidentiality - means controlled release of information and protection from
unauthorized access. Threats to confidentiality arise from cracking, stealing
information, fraud, etc.

Integrity - represents the control of modifications and correct and authorized
information transaction. Threats to integrity appear as processing of incorrect
information due to equipment failure, human and software errors, malicious damage,
fraud, etc.

Availability - means that information is available when required and that the denial of
service will not occur. Threats to availability arise due to equipment failure or
overload, denial of service attacks, malicious damage, theft of resources, etc.

Incident - is defined as an action likely to lead to grave consequences. In terms of
information technology, it is anything that happens to information that is not
desirable.

Secure information system - is the information system, which may assure
confidentiality, integrity and availability of information. It also has to satisfy five
axioms defining the security of information.

 Appendix A

A - 7

Chapter 8

Intelligent security system - the system with intelligent capabilities such as:
the ability to learn or understand from experience, the ability to acquire and retain
knowledge, the ability to respond quickly and successfully to a new situation, the
ability to make proper decisions, etc.

Principle of increasing precision with decreasing intelligence - is the principle of
logical structure of an intelligent security system. It means that there are different
levels of the intelligence, which are hierarchically arranged. The highest level of
intelligence is the organization level where main decisions and rules are generated. It
is also the level where the lesser precision is required. The second level is
coordination level, which connects the organization and execution levels. In this level
the rules are more precise, but overall intelligence is decreased. Finally the third level,
which has the smallest intelligence, is the execution level where concrete actions are
performed.

Observing element - is the entity, which works on the lowest level of intelligence. It
basically consists of two elements: an observing agent and an observing transceiver.
The observing agent monitors activities, which might be "abnormal" or "interesting"
(for some definitions of abnormal and interesting). For example, an agent could be
looking for a large number of telnet connections to a protected host, and consider the
occurrence of that event as suspicious. The agent would then generate a report that is
sent to its transceiver. The transceiver then sends the appropriate signal to the higher
level of intelligence. There may be more agents connected to one transceiver.

Knowledge acquisition subsystem - is the subsystem, which collects the information
from observing elements (execution level) and transfers it to the higher level of
intelligence. This subsystem works on higher level of intelligence than observing
elements. It is the coordination level. The knowledge acquisition subsystem contains
the units: controllers, coordinators and a dispatcher.

Knowledge base - represents the highest level of intelligence, i.e. organization level.
The knowledge base contains the components: knowledge database, unit of inference
rules, problem description unit and the problem status unit. The knowledge database
contains records about known irregular states of the system. The unit of inference
rules contains the rules, which are sent to inference engine. The problem description
unit serves as a clipboard for the current problem, which has to be solved. The
problem status unit associates the priority range to the problems from problem
description unit.

Inference engine - is executive part of knowledge base, still remaining on the highest
level of intelligence. It consists of reasoning unit and explanation unit. The reasoning
unit performs the translation from the inference rules, received from the knowledge
base, to decision rules. It performs decision making and planning according to
inference rules and priority lists of problems, which are received from the problem
status unit. Explanation unit transforms the decision rules from reasoning unit further
to the form, which is acceptable by units on the lower level of intelligence.

 Appendix A

A - 8

Adaptation subsystem - is the subsystem on the coordination level, which is
responsible for the ability of system to adapt to changes in its environment, which
could possibly endanger the function of complete information system. The elements
of adaptive subsystem are: criterion unit, adaptation unit and regulator.

Executive element - is the entity, which works on the lowest level of intelligence. It
consists of two units: an executive transceiver and an executive agent. The executive
element executes the commands received from the adaptation subsystem. The
executive transceiver translates the directions from the regulator to instructions
understandable by executive agent. There may be more agents connected to one
transceiver.

Chapter 9

Fuzzy logic - is a class of multivalent, generally continuous-valued logic based on the
theory of fuzzy sets. Fuzzy logic is concerned with the set theoretic operations
allowed on fuzzy sets, how these operations are performed and interpreted, and the
nature of fundamental fuzziness.

Fuzziness - is a measure of how well an instance (value) conforms to a semantic ideal
or concept. Fuzziness describes the degree of membership in a fuzzy set.

Crisp set - is the term, which is usually applied to classical (Boolean) sets where
membership is either [1] (totally contained in the set) or [0] (totally excluded from the
set).

Fuzzy set - differs from conventional or crisp set by allowing partial or gradual
memberships.

Fuzzy complement - indicates the degree to which an element (x) is not a member of
the fuzzy set (A).

Degree of membership - is the degree to which a variable's value is compatible with
the fuzzy set. The degree of membership is a value between [0] (no membership) and
[1] (complete membership) and is drawn from the truth function of the fuzzy set. The
term truth function is often used interchangeably with degree of membership.

Hedge - is a term, basically linguistic in nature, which modifies the surface
characteristics of a fuzzy set. A hedge has an adjectival or adverbial relationship with
a fuzzy set.

Fuzzy numbers - are numbers that have fuzzy properties. Models deal with scalars by
treating them as fuzzy regions through the use of hedges.

Fuzzy operators - are the class of connecting operators, notably AND and OR, that
combines antecedent fuzzy propositions to produce a composite truth value. The
traditional Zadeh fuzzy operators use the min-max rules, but several other alternative
operator classes exist.

 Appendix A

A - 9

Min-Max rule - is the basic rule of implication and inference for fuzzy logic that
follows the traditional Zadeh algebra of fuzzy sets.

Rules - are statements of knowledge that relate the compatibility of fuzzy premise
propositions to the compatibility of one or more consequent fuzzy space. The rules
most often have the IF...THEN structure.

Fuzzy expert system - is an expert system based on fuzzy rules reasoning. The
formalism used by fuzzy expert production systems is a set of rules of the type:

IF (certain specified patterns occur in the data)
THEN (appropriate actions are to be taken, including modifying old data or
 asserting new data)

Rule firing - is the procedure of starting the rule. A rule is fireable if the data yield an
antecedent confidence above the rule firing threshold. To be actually fired, the rule
must also be turned on for firing and the rule must be picked for firing.

Serial rule firing - corresponds to deductive logic, and it involves firing one rule at a
time, and reevaluating rule firing after each step.

Parallel rule firing - corresponds to inductive logic, and it fires all fireable rules
effectively at once.

Fuzzification - is the process of translation of input numbers into confidences in a
fuzzy set of word descriptors. That is done by membership (or truth) functions.

Defuzzification - is the reverse process of fuzzification. It is intuitive that
fuzzification and defuzzification should be reversible, that is, if a number is fuzzified
into a fuzzy set and immediately defuzzified, the same number should be get back
again.

Chapter 10

Level of risk - is the quantity, which is proportionally related to the entropy of the
system. It means that for low risk level the entropy of the system will be also low, for
high risk the entropy will also be high.There can be several grades of the risk, ranging
from very low to very high. The value of the risk is fuzzy quantity, because the sharp
edges for the value of risk cannot be easily determined. Human experts will not
always agree where is the borderline for some suspicious action to start the adequate
reaction of security system. The main goal of the intelligent security system is then to
assure the lowest level of the risk for the entire information system. If the level of risk
increases, the actions should be taken to make it lower.

 Appendix A

A - 10

Chapter 11

Network management - is the process of controlling a complex information network
to maximize its efficiency and productivity.

Centralized architecture - has the network management platform on one computing
system, at a location that is responsible for all network management duties.

Hierarchical network management architecture - uses multiple systems, with one
system acting as a central server and the others working as clients.

Distributed architecture - combines the centralized and distributed approaches.
Instead of having one centralized platform or a hierarchy of client-server platforms,
the distributed approach uses multiple peer platforms.

Loosely coupled parallel system - is a processing system with multiple processors. In
loosely coupled parallel systems each processor is provided by its own local memory
and often has its own set of periphery devices. Each processor is actually a core of
computing module, having significant degree of autonomy, because local memory is
able to comprehend programs and data, which are to be processed. Loosely coupled
parallel computing systems are by their structure very similar to information
networks.

Neural networks - use a different computational paradigm than conventional von
Neumann's architectures. Neural networks are composed of nodes and weighted
connections between nodes, where each node computes its output based on a function
of its weighted inputs. The overall function that a network computes is typically
changed by altering the values of the weights between nodes until the desired result is
achieved.

Quantum computing - makes use of coherent states to process information. Rather
than the sequential discrete logic of conventional information processing, use is made
of quantum superposition of so called qubits (the standard shortcut for "quantum
binary digit"). Computing requires adiabatic operation. Quantum computers, if they
would exist, could perform complicated tasks exponentially faster than conventional
computers.

Privacy protection - in terms of protection of information concerns protection of
confidential data in transport or when they are stored in system. In both cases various
methods of encryption can be used to make a document which has to be protected
unreadable for unwanted eyes.

Encryption - is a process by which a message (called plaintext) is transformed into
another message (called ciphertext) using a mathematical function and a special
encryption password, called the key.

Decryption - is the reverse process of encryption. The ciphertext is transformed back
into the original plaintext using the mathematical function and a key.

 Appendix A

A - 11

Encryption algorithm - is the function, usually with some mathematical foundations,
which performs the task of encrypting and decrypting the data.

Encryption keys - are used by the encryption algorithm to determine how data is
encrypted or decrypted.

 Appendix A

A - 12

 Appendix B

B - 1

APPENDIX B

Prevention Methods

B.1. Security Policy

The security policy is a management directive that covers the why of security. It
should be a brief and concise document dealing with business, legal and ethical
requirements, what the organization considers as security risks, what preventive
measures should be established, who is responsible for monitoring and enforcing
these measures, what actions will be taken if there are violations. It maximizes the
strategic value of the system and data by sustaining authorized and secured use in
daily operations conducted by users. It provides clear assignment of responsibility for
protection against unacceptable and unauthorized use, promotes security measures,
ensures that authorized users and all other entities comply with adopted policies and
local and national laws. It is important that it is a specific document regarding
orientation to the organization's business policy, because overall protection
framework should be adjusted to specific organizational structure to meet all required
protection needs. The policy is a handbook to be handed to staff as a part of a security
awareness campaign.

B.2. Security Standards

The security standard deals with what needs to be done. It describes a status to be
achieved. It defines the security organization, roles and responsibilities, information
classification and handling, incident reporting procedures, user accounts and
passwords, security related system parameters, system security auditing, network
related configuration parameters, object protection, data backup and recovery
procedures, disposal of system data, etc.

Security standards deal with physical security, information security, user security and
contingency planning. Contingency planning involves the availability as a major
factor which includes resilience or the ability to recover quickly, redundancy or the
duplication of every aspect of computing and recovery meaning actions needed to
restore a system. Further, it involves disaster recovery from accidental mishaps,
malicious acts, natural disasters and finally, disaster tolerance.

B.3. Security Procedures

Security procedures should consider the following areas: network security, operating
systems, data security, application security and again contingency planning.

 Appendix B

B - 2

Security procedures are dependent on implementation, systems and vendors. They
describe how to achieve the status mentioned in the standard and document the
reasons why this can not be done on a given platform. Procedures specify the day-to-
day working methods for achieving the standards. These are obligatory. They deal
with individual platforms, applications, departments, etc. As they deal with the actual
method of working, they are often subject to frequent changes.

B.4. Documentation Set

Once, when security policy, standards and procedures are established it is necessary to
make a basic documentation set. It is obligatory to protect the documentation, i.e. to
establish classes such as: free distribution, confidential, top secret. It is also needed to
know how to handle each category, i.e. labeling, distribution, copying, storage,
protection and destruction.

B.5. Education and Training

The important part of prevention is proper education and training of employees.
Employees are often threats to the organization's security. The range of employees
spans from good intentioned employees that make accidental errors to disgruntled
employees seeking revenge. In order to prevent that from happening, employees
should be properly educated and regularly checked. Training should include
awareness sessions, because people tend to forget and get disinterested. They should
be made aware that they also contribute to the organization's security and know what
measures they should take to prevent accidental error that might lead to more dire
consequences. All employees should learn about the organization's security policy and
more specifically how to protect the information on their own workplace. The
computer administrative personnel should be trained at how to implement security
standards and procedures to best protect the organization's information resources.

B.6. Checking

There should be a regular checking of equipment against known security holes and
failures. Also the regular checking of employees should be performed, no matter how
unpleasant that task may seem. Employees should be qualified to carry out their
duties. It takes management attention to make this happen. It is difficult to spot
potential criminals, because computer-crime-prone individuals are: young or not so
young, male or female, educated or less educated, white, black, Asian or other, etc.

B.7. Computer Laws

All employees should naturally be acquainted not only with the organization's security
policy but also with local, national and international laws and regulations. The
existing computer laws usually deal with accessing, altering, damaging or destroying

 Appendix B

B - 3

computers, computer systems, networks, software, programs or data bases or any part
thereof, "with the intent to interrupt the normal functioning of an organization or to
devise or execute any scheme or artifice to defraud or deceive or control property or
services by means of false or fraudulent pretenses, representations or promises"
[Pennsylvania Computer Law]. It usually refers to intentional accesses without
authorization and any altering, interference with the operation of computers, computer
systems, networks, software, programs or databases. And what is of great importance
in organizations it refers to the intentional sharing or publishing of a password,
identifying code, personal identification number or other confidential information
about a personnel, computer systems, organization etc. Many unintentional and
accidental errors can be avoided if employees are aware of possible mistakes, their
consequences and penalties.

 Appendix B

B - 4

 Appendix C

C - 1

APPENDIX C

Source Code of Prototype Nisan

In this Appendix the remaining Tcl code of prototype described in Chapter 10 will be
given. Every Tcl program is shown on its own Figure. Comments are put in bold font
style, so to make the understanding of code easier.

################
filter_1.tcl
################
MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "FILTER-SLOG"
set MYHOST "virusi"
set MYREPOSITORY "../report_inc_${MYHOST}"
set MYCHECK "../check_${MYHOST}/${MYNAME}.chk"

set MYOUT "../filters_${MYHOST}"
set MY_IN_ENTITY "SCANNER"
set MY_EXT "LOG"

set LASTCHECK 0
set cCONTROL "" ;# current control info

###
set PDIR "../lib"

calls needed procedures

source $PDIR/lib_names.tcl
source $PDIR/code_filter_1.tcl

###

proc MAIN { } {

global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {

set cCONTROL [getControl $i]
Process1 $i
update_Check $i

}
}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure C.1. Code of filter_1.tcl

 Appendix C

C - 2

##
#code_filter_1.tcl
##
#line by line filtering input
#catching for patterns
#and generate predefined line message format

proc Process1 { fl } {

global LASTCHECK cCONTROL
global MYOUT MYNAME
global HOST TYPE UNIT

set REPORT "" ;#report for output

set f [open $fl r]
set cnt 0 ;#F-Secure counter
set ftime {}

while { [gets $f line] >= 0 } {
set words [toWords $line]

switch -exact [lindex $words 0] {
{Scan} {

if { $cnt > 0 } {
set r [formatOUT F-SecureGatekeeper $ftime "$cnt

Infection Stopped"]
lappend REPORT $r
set cnt 0
set r {}
set ftime {}

}
set r [parseScan $words]
lappend REPORT $r

}
{<F-Secure} {

set ftime [parseFsec $words]
incr cnt

}
}

}

#there is F-secure - Scan at the end
if { $cnt > 0 } {

set r [formatOUT F-SecureGatekeeper $ftime "$cnt Infection Stopped"]

lappend REPORT $r
set cnt 0
set r {}

}

close $f

##
#output
##

set fname "${MYOUT}/[doFILEMASK VIR [doTIMESTAMP] $HOST $MYNAME TXT]"

set f [open $fname w+]
foreach r $REPORT {

puts $f "$cCONTROL $r"
}

close $f
}
#end Process

#end

Figure C.2. Code of code_filter_1.tcl

 Appendix C

C - 3

################
filter_2.tcl
################
MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "FILTER-SFPT"
set MYHOST "virusi"
set MYREPOSITORY "../report_inc_${MYHOST}"
set MYCHECK "../check_${MYHOST}/${MYNAME}.chk"

set MYOUT "../filters_${MYHOST}"
set MY_IN_ENTITY "SCANNER"
set MY_EXT "FPT"

set LASTCHECK 0
set cCONTROL "" ;# current control info

set LIMIT 100 ;# massive infection limit

###
set PDIR "../lib"

calls needed procedures

source $PDIR/lib_names.tcl
source $PDIR/code_filter_2.tcl

###

proc MAIN { } {

global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {
set cCONTROL [getControl $i]
Process2 $i
update_Check $i

}
}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure C.3. Code of filter_2.tcl

 Appendix C

C - 4

##
#code_filter_2.tcl
##
#line by line filtering input
#catching for patterns
#and generate predefined line message format

proc Process2 { fl } {

global LASTCHECK cCONTROL
global MYOUT MYNAME
global HOST TYPE UNIT
global LIMIT

set f [open $fl r]
while { [gets $f line] >=0 } {

set words [toWords $line]
set w1 [lindex $words 0]
set w2 [lindex $words 1]

switch -exact $w1 {
{Scanned} {

if {$w2=="at:"} {
set tm [scanTime $words 2]

}
}
{Action:} {

set action [lrange $words 1 end]
}
{Found:} {
scan $line "Found: %d infection(s), %d suspected infection(s) in %d file(s)" infec
sinfec x
break
}
}

}
close $f

set mes {}

if { $infec > $LIMIT } {
set mes "Massive Infection"

} else {
set mes [format "Infected=%d Suspected=%d" $infec $sinfec]

}

set event $mes

##
#output
##

set fname "${MYOUT}/[doFILEMASK VIR [doTIMESTAMP] $HOST $MYNAME TXT]"

set f [open $fname w+]
puts $f "$cCONTROL [formatOUT $action $tm $event]"
close $f

}
###

#end

###

Figure C.4. Code of code_filter_2.tcl

 Appendix C

C - 5

################
filter_3.tcl
################
MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "FILTER-ICREP"
set MYHOST "virusi"
set MYREPOSITORY "../report_inc_${MYHOST}"
set MYCHECK "../check_${MYHOST}/${MYNAME}.chk"

set MYOUT "../filters_${MYHOST}"
set MY_IN_ENTITY "INTCHCK"
set MY_EXT "REP"

set LASTCHECK 0
set cCONTROL "" ;# current control info

###
set PDIR "../lib"

calls needed procedures

source $PDIR/lib_names.tcl
source $PDIR/code_filter_3.tcl

###

proc MAIN { } {

global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {

set cCONTROL [getControl $i]
Process3 $i
update_Check $i

}
}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure C.5. Code of filter_3.tcl

 Appendix C

C - 6

##
#code_filter_3.tcl
##
#line by line filtering input
#catching for patterns
#and generate predefined line message format

#time parser
#$$$$ Proc Start on YYYY-MON-DD HH:mm"

proc spec2time { line } {
scan $line "%s %s %s %s %d-%3s-%d %d:%d" a b c d Y M D H m
set M [clock format [clock scan "$D $M $Y"] -format "%m"]
return [format "%0.4s%0.2s%0.2s%0.2s%0.2s" $Y $M $D $H $m]

}

##
line by line

proc Process3 { fl } {

global LASTCHECK cCONTROL
global MYOUT MYNAME
global HOST TYPE UNIT
global LIMIT

set tm {}

set z 0
set t 0
set v 0

set B {}
set P {}
set PC {}
set S {}
set CM {}

set f [open $fl r]

while { [gets $f line] >= 0 } {

set line [string trim $line]

#check by regexp

switch -regexp -- $line {
{^.*Processing started on.*$} { set tm [spec2time $line] }
{^****[A-Z].*$} { incr z }
{^\.\.\.\.[A-Z].*$} { incr t }
{^>>>>[A-Z].*$} { incr v }
{^.*Boot.*$} { set B [lrange $line 8 end] }
{^.*Partition.*$} { set P [lrange $line 4 end] }
{^.*PC Config.*$} { set PC [lrange $line 6 end] }
{^.*System memory.*$} { set S [lrange $line 6 end] }
{^.*CMOS memory.*$} { set CM [lrange $line 5 end] }

}

}

close $f

##
#output
##

set action Checking

set f [myFileOut VIR $HOST TXT]

set event [format "%d Virus Alert" $z]
puts $f "$cCONTROL [formatOUT $action $tm $event]"

 Appendix C

C - 7

set event [format "%d Change Detected" $t]
puts $f "$cCONTROL [formatOUT $action $tm $event]"

set event [format "%d File Corrupted" $v]
puts $f "$cCONTROL [formatOUT $action $tm $event]"

puts $f "$cCONTROL [formatOUT $action $tm $B]"
puts $f "$cCONTROL [formatOUT $action $tm $P]"
puts $f "$cCONTROL [formatOUT $action $tm $PC]"
puts $f "$cCONTROL [formatOUT $action $tm $S]"
puts $f "$cCONTROL [formatOUT $action $tm $CM]"

close $f

}
###

#end

Figure C.6 Code of code_filter_3.tcl

###################
transceiver.tcl
###################
MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "TRANSCEIVER-OBS"
set MYHOST "virusi"
set MYREPOSITORY "../filters_${MYHOST}"
set MYCHECK "../check_${MYHOST}/${MYNAME}.chk"

set MYOUT "../transceiver_obs_${MYHOST}"
set MY_IN_ENTITY "FILTER-*"
set MY_EXT "TXT"

set LASTCHECK 0
set cCONTROL "" ;# current control info

###

set PDIR "../lib"

calls needed procedures

source $PDIR/lib_names.tcl
source $PDIR/code_transceiver_obs.tcl

###

proc MAIN { } {
global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT MYOUT MYNAME
global HOST

global FNAME

set FNAME "${MYOUT}/[doFILEMASK VIR [doTIMESTAMP] $HOST $MYNAME TXT]"

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {

set cCONTROL [getControl $i]
Process4 $i
update_Check $i

}

 Appendix C

C - 8

doTransOut

#######################################
#do output
#######################################

}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure C.7. Code of transceiver.tcl

##
#code_transceiver_obs.tcl
##

proc doTransOut {} {
global LASTCHECK cCONTROL
global MYOUT MYNAME
global HOST TYPE UNIT

global FNAME

global REPORT ;#array to keep status
global TREPORT ;#array to keep status
global OREPORT ;#type of new output

set f [open $FNAME a+]

foreach r [lsort -ascii [array names TREPORT]] {
catch {
puts $f "$TREPORT($r) $OREPORT($r) \{ $r \} \{ $REPORT($r,0) \}"
}
catch {
puts $f "$TREPORT($r) $OREPORT($r) \{ $r \} \{ $REPORT($r,1) \}"
}

}

close $f
}
#end Process

###
line by line

proc Process4_SCANNER { line TN KEY EVENT } {

global LASTCHECK cCONTROL
global MYOUT MYNAME
global HOST TYPE UNIT

global REPORT ;#array to keep status
global TREPORT ;#array to keep status
global OREPORT ;#type of new output

set aa "$KEY $EVENT"

 Appendix C

C - 9

switch -regexp -- $KEY {
{Checking} {

lappend REPORT($TN,0) $aa
}

default {
lappend REPORT($TN,1) $aa

}
}

switch -regexp -- $EVENT {
{^.*OK|Scan Up to Date} { set OREPORT($TN) OK }
{Scan Aborted|Infection Stopped} {set OREPORT($TN) Check}
default { set OREPORT($TN) Warning}

}

set TREPORT($TN) [lrange $line 0 2] ;#first three fields of new output
}

###
line by line

proc Process4_INTCH { line TN KEY EVENT } {

global LASTCHECK cCONTROL
global MYOUT MYNAME
global HOST TYPE UNIT

global FNAME

set REPORT {} ;#array to keep status
set TREPORT {} ;#array to keep status
set OREPORT {} ;#type of new output

set aa [list $KEY $EVENT]
switch -regexp -- $KEY {
{Checking} {

set REPORT $aa
}

default {
set REPORT $aa

}
}

switch -regexp -- $EVENT {
{^.*OK|Scan Up to Date} { set OREPORT OK }
{Scan Aborted|Infection Stopped} {set OREPORT Check}
default { set OREPORT Warning}

}

set TREPORT [lrange $line 0 2] ;#first three fields of new output

set f [open $FNAME a+]
puts $f "$TREPORT $OREPORT \{ $TN \} \{ $REPORT \}"
close $f

}

#end
###
line by line

proc Process4 { fl } {

global LASTCHECK cCONTROL
global MYOUT MYNAME
global HOST TYPE UNIT

global REPORT ;#array to keep status
global TREPORT ;#array to keep status

 Appendix C

C - 10

global OREPORT ;#type of new output

set f [open $fl r]

while { [gets $f line] >= 0 } {

set AGENT [string trim [lindex $line 2]] ;# agent
set TN [string trim [lindex $line 4]] ;# TIME
set KEY [string trim [lindex $line 3]] ;# action key
set EVENT [lindex $line 5]

switch -regexp -- $AGENT {
{SCANNER} {

Process4_SCANNER $line $TN $KEY $EVENT
}
{INTCH} {

Process4_INTCH $line $TN $KEY $EVENT
}

}

}

close $f

}

#end Process

###

#end

Figure C.8. Code of code_transceiver_obs.tcl

#################
controler.tcl
#################
MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "CONTROLLER-OBS"
set MYHOST "virusi"
set MYREPOSITORY "../transceiver_obs_${MYHOST}"
set MYCHECK "../check_${MYHOST}/${MYNAME}.chk"

set MYOUT "../controller_obs_${MYHOST}"
set MY_IN_ENTITY "TRANSCEIVER-OBS"
set MY_EXT "TXT"

set LASTCHECK 0
set cCONTROL "" ;# current control info

###

set PDIR "../lib"

calls needed procedures

source $PDIR/lib_names.tcl
source $PDIR/code_controller.tcl

###

###

proc MAIN { } {
global LASTCHECK cCONTROL

 Appendix C

C - 11

global MY_IN_ENTITY MY_EXT MYOUT MYNAME
global HOST

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]
set fname "${MYOUT}/[doFILEMASK VIR [doTIMESTAMP] $HOST $MYNAME TXT]"

if { $inrep != {} } {
Process_5 $inrep
doContOut $fname

}

update_Check $inrep

#######################################
#do output
#######################################

}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure C.9. Code of controler.tcl

##
#code_controller.tcl
##

proc doContOut {fout} {

global LASTCHECK cCONTROL
global MYOUT MYNAME
global HOST TYPE UNIT

global cREPORT wREPORT oREPORT ;#array to keep status

set f [open $fout w+]

set x [array exists wREPORT]
if { $x > 0 } {

foreach r [lsort [array names wREPORT]] {
puts $f $wREPORT($r)

}
close $f
return

}

set x [array exists cREPORT]
if { $x > 0 } {

foreach r [lsort [array names cREPORT]] {
puts $f $cREPORT($r)

}
close $f
return

}

set x [array exists oREPORT]
if { $x > 0 } {

foreach r [lsort [array names oREPORT]] {
puts $f $oREPORT($r)

}
close $f
return

}

 Appendix C

C - 12

close $f
}

#end Process

###
line by line

proc Process_5 { fin } {

set w 0
set o 0
set c 0

global LASTCHECK cCONTROL
global MYOUT MYNAME
global HOST TYPE UNIT

global cREPORT wREPORT oREPORT ;#array to keep status

set f [open $fin]

while { [gets $f line] >= 0 } {

set KEY [string trim [lindex $line 3]]

switch -regexp -- $KEY {
{Warning} {

set wREPORT($w) $line
incr w

}
{OK} {

set oREPORT($o) $line
incr o

}
{Check} {

set cREPORT($c) $line
incr c

}
}

}
close $f

}

Figure C.10. Code of code_controller.tcl

#######################
coordinator_vir.tcl
#######################
MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "COORDINATOR-VIR"

set MYHOST "*"
set MYREPOSITORY "../controller_obs_${MYHOST}"
set MYCHECK "../check/${MYNAME}.chk"

set MYOUT "../coordinator_vir_in"
set MY_IN_ENTITY "*"
set MY_EXT "TXT"

set LASTCHECK 0
set cCONTROL "" ;# current control info

 Appendix C

C - 13

###

set PDIR "../lib"

calls needed procedures

source $PDIR/lib_names.tcl

###

proc ssort { a b } {
return [string compare $a $b]

}

proc MAIN { } {

global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT

global MYOUT MYNAME
global TYPE HOST

set TYPE "VIR"
set HOST "-"

set fname "${MYOUT}/[doFILEMASK $TYPE [doTIMESTAMP] $HOST $MYNAME $MY_EXT]"
set inrep [lsort -command ssort [scan_for_IN $MY_IN_ENTITY $MY_EXT]]

foreach i $inrep {

exec cat $i >> $fname

update_Check $i
}

}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure C.11. Code of coordinator_vir.tcl

#######################
dispatcher_in.tcl
#######################
MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "DISPATCHER-IN"

set MYHOST "*"
set MYREPOSITORY "../coordinator_vir_in"
set MYCHECK "../check/${MYNAME}.chk"

set MYOUT "../dispatcher_in"
set MY_IN_ENTITY "*"
set MY_EXT "TXT"

set LASTCHECK 0

 Appendix C

C - 14

set cCONTROL "" ;# current control info

###

set PDIR "../lib"

calls needed procedures

source $PDIR/lib_names.tcl

###

proc MAIN { } {

global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT

global MYOUT MYNAME
global TYPE HOST

set TYPE "VIR"
set HOST "-"

set fname "${MYOUT}/[doFILEMASK $TYPE [doTIMESTAMP] $HOST $MYNAME $MY_EXT]"
set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {

exec cat $i >> $fname

update_Check $i
}

}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure C.12. Code of dispatcher_in.tcl

#######################
problemdes.tcl
#######################
MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "PROBLEMDES"

set MYHOST "*"
set MYREPOSITORY "../dispatcher_in"
set MYCHECK "../check/${MYNAME}.chk"

set MYOUT "../problem_description"
set MY_IN_ENTITY "*"
set MY_EXT "TXT"

set LASTCHECK 0
set cCONTROL "" ;# current control info

###

set PDIR "../lib"

 Appendix C

C - 15

calls needed procedures

source $PDIR/lib_names.tcl

###

proc MAIN { } {

global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT

global MYOUT MYNAME
global TYPE HOST

set TYPE "VIR"
set HOST "-"

set fname $MYOUT
set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {

;#just copy into OUT DIR, at the moment

exec cp $i $fname

update_Check $i
}

}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure C.13. Code of problemdes.tcl

#######################
lib_names.tcl
#######################

#names handling in TCL
#all in dirs PATH:/dirname
#name coding

#operations
#1 find new file in my income
#2 return fd on my file
#3 close my fd (2)
#4 update my check file

MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

 Appendix C

C - 16

##
#split input line from message into trimmed list of tokens
##

proc toWords { line } {
set line [string trim $line]
set rline {}

foreach l $line {
set l [string trim $l]
if { $l != {} } {

lappend rline $l
}

}
return $rline

}

##
#create timestamp for message stamping
##

proc doTIMESTAMP {} {
return [clock clicks]

}
#end of doTIMESTAMP

##
#generate the first three fields of message line
#in output format
##

proc formatOUT { task time event } {
return "\{ $task \} \{$time \} \{$event \}"

}
#end of formatOUT

##
#generate file mask to emulate check for input message
#it is file name separeted with _
##

proc doFILEMASK { {TYPE *} {TIME *} {HOST *} {UNIT *} { EXT *} } {
global MYNAME MYREPOSITORY MYCHECK

set FL "${TYPE}_${TIME}_${HOST}_${UNIT}.${EXT}"
;# create file name mask

return $FL
}

#get the file name out of path and split it on . _ as separators
#all behind / {TYPE TIME HOST UNIT EXT}

proc scanMask { fname } {
set r [split [file tail $fname] ._]
return $r

}

#get info about message sender from file name
#this is control info, it is set into global variables
#and returns it as list

proc getControl { fname } {
global HOST TYPE UNIT

set c [scanMask $fname]

set HOST [lindex $c 2] ;# message originator
set TYPE [lindex $c 0] ;# message type
set UNIT [lindex $c 3] ;# message unit

return "$HOST $TYPE $UNIT"
}

 Appendix C

C - 17

#scan my REPOSITORY
#find files newer than LASTCHECK and related for ME
#from some entity

proc scan_for_IN { ent { ext *} } {

global MYNAME MYREPOSITORY MYCHECK
global LASTCHECK

set REZ ""
set FL [doFILEMASK {*} {*} {*} $ent $ext] ;# create file name mask

#compare file atributes with timestamp

set F [glob -nocomplain ${MYREPOSITORY}/$FL]
foreach f $F {

set t [file mtime $f]
if { $t > $LASTCHECK } {

lappend REZ $f
}

}
return $REZ

}

#look for filename in my check file
#1. check is empty -> return filename and set LASTCHECK to 0
#2. check is not empty and there is no filename in, return filername
#3. check is not empty and there is filename in, return {}

proc do_Check_Test { fname } {
global MYNAME MYREPOSITORY MYCHECK
global LASTCHECK

if { [file exists $MYCHECK] } {
if { [grep $fname $MYCHECK] == {} } {

return {}
} else {

;#not in
return $fname

}
} else {

set LASTCHECK 0
return $fname

}
return {}

}

#update info on message in check file
#to avoid double processing

proc update_Check { fname } {
global MYNAME MYREPOSITORY MYCHECK
global LASTCHECK

set f [open $MYCHECK a+]
puts $f "[file tail $fname] [doTIMESTAMP]"
close $f

}

#######################################

#read time from line, it is tricky because of time format in logs

proc scanTime {words p} {
set pp $p
incr p

set A [lindex $words $pp]
set B [lindex $words $p]

scan "$A $B" "%d.%d.%d %d:%d" D M Y H m

 Appendix C

C - 18

return [format "%0.4d%0.2d%0.2d%0.2d%0.2d" $Y $M $D $H $m]

}

proc parseFsec { words } {
return [scanTime $words 6]

}

#parse the tokens for some patterns and read the appropriate data

proc parseScan { words } {

set task {}
set tm {}
set event {}

set w2 [lindex $words 1]
switch -exact $w2 {

{All} {
set task [lrange $words 0 5]
set tm [scanTime $words 8]
set event [lrange $words 10 11]

}
{A:} {

set task [lrange $words 0 1]
set tm [scanTime $words 4]
set event [lrange $words 6 end]

}
{B:} {

set task [lrange $words 0 1]
set tm [scanTime $words 4]
set event [lrange $words 6 end]

}
{Network} {

set task [lrange $words 0 1]
set tm [scanTime $words 4]
set event [lrange $words 6 end]

}
{Folder} {

set task [lrange $words 0 1]
set tm [scanTime $words 4]
set event [lrange $words 6 end]

}
}

return [formatOUT $task $tm $event]

}

#################################
#generate the output filename
#

proc myFileOut { TYPE HOST EXT } {
global MYNAME MYOUT

set fname "${MYOUT}/[doFILEMASK $TYPE [doTIMESTAMP] $HOST $MYNAME $EXT]"
set f [open $fname w+]
return $f
}

#emulate sending message
proc toOUT { f args } {

puts $f $args

}

#end

Figure C. 14. Code of lib_names.tcl

 Appendix C

C - 19

################
know_main.tcl
################
MYNAME program name
MYREPOSITORY program repository, DIR where income reports are
MYCHECK program check file, where checks are stored
MYOUT dir where outputs are send
MY_IN_ENTITY entities which can generate input reports
LASTCHECK time of last check

set MYNAME "VIR_KNOWLEDGE"
set MYHOST "*"
set MYREPOSITORY "../../dispatcher_in"
set MYCHECK "../../check/${MYNAME}.chk"

set MYOUT "."
set MY_IN_ENTITY "*"
set MY_EXT "TXT"

set LASTCHECK 0
set cCONTROL "" ;# current control info

###

set PDIR "../../lib"

set KDIR "." ;# where database is stored

source $PDIR/lib_names.tcl
source $PDIR/code_knowledge.tcl

###

proc MAIN { } {

global LASTCHECK cCONTROL
global MY_IN_ENTITY MY_EXT

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]
foreach i $inrep {

set cCONTROL [getControl $i]
Process7 $i
update_Check $i

}
}

##

set TIMEOUT 1

set HOST ""
set TYPE ""
set UNIT ""
MAIN

#end

Figure C.15. Code of know_main.tcl

##
#code_knowledge.tcl
##

#test if args are in database

proc INKNOW { args } {
global MARK
global VIRKNOW

 Appendix C

C - 20

if { [catch { set x $VIRKNOW($args) }] } {
set VIRKNOW($args) {}
set MARK 1

}
}

#write the database

proc KNOW2FILE { } {
global MARK
global VIRKNOW
global KDIR

if { $MARK > 0 } {
set fd [open ${KDIR}/virknow.tcl w]
#puts $fd "array set VIRKNOW [list [array get VIRKNOW]]"
foreach n [array names VIRKNOW] {

puts $fd "set VIRKNOW\($n\) \{ $VIRKNOW($n) \} \n"
}
close $fd

}
}

#save the database

proc FILES2KNOW { } {
global MARK
global VIRKNOW
global KDIR

set MARK 0
catch {

source $KDIR/knowdatabase.tcl
}
catch {

source $KDIR/virknow.tcl
}

}

proc Process7 { fi } {

global VIRKNOW
global MARK

set N 0

set f [open $fi r]

while { [gets $f line]>=0 } {
set line [string trim [lindex [string trim $line] 5]]
set x [string range $line 0 0]
if { $x != "\{" } {

set line [list $line]
}

foreach l $line {
regsub -all { *} $line {*} a
set x [array get VIRKNOW $a]
if { $x == {} } {

set MARK 1
set VIRKNOW($line) { - - }

} else {
incr N

}
}

}

close $f

KNOW2FILE
}

Figure C.16. Code of code_knowledge.tcl

 Appendix C

C - 21

 Bibliography

II - 1

BIBLIOGRAPHY

Books and Scripts:

[1] Anonymous
 Maximum Security, 1st Edition,
 Sams.net Publishing, 1997.
[2] F.B. Cohen
 A Short Course on Computer Viruses,
 ASP Press, 1990.
[3] F.B. Cohen
 Computer Viruses, Ph.D. Thesis,
 ASP Press, 1985.
[4] F.B. Cohen
 Fred's Papers - Book I,
 ASP Press, 1988.
[5] D.E. Comer
 Internetworking With TCP/IP, Vol. I, 1st Edition,
 Prentice-Hall, Inc., 1991.
[6] E. Cox
 The Fuzzy Systems Handbook,
 Academic Press, Inc., 1994.
[7] Y. I. Degtiarev, B.N. Kalinin, V.N. Markov, A.I. Moroz, K.A. Pupkov, B.P.
 Tyuhov, N.A. Shimko
 Basics of Cybernetics, (in Russian),
 Visshaya Shkola, 1976.
[8] D. Delija
 Fuzzy Logic in Monitoring and Control of Computing Networks and Systems,
 Ph.D. Thesis, (in Croatian),
 University of Zagreb, Faculty of Engineering and Computing, 1998.
[9] D. Dubois, H. Prade
 Fuzzy Sets and Systems: Theory and Applications,
 Academic Press, Inc., 1980.
[10] S.Garfinkel, G. Spafford
 Practical UNIX & Internet Security, 2nd Edition,
 O'Reilly & Associates, Inc., 1996.
[11] M. Harrison
 Tcl/Tk Tools
 O'Reilly & Associates, Inc., 1997.
[12] J.Havrda
 Stochastic Processes and Theory of Information, (in Czech),
 Edicni Stredisko CVUT, 1986.
[13] J. Hlavicka
 Computer Architecture, (in Czech),
 Vydavatelstvi CVUT, 1994.
[14] Z. Kotek, P. Vysoky, Z. Zdrahal
 Cybernetics, (in Czech),
 Edicni Stredisko CVUT, 1987.

 Bibliography

II - 2

[15] D. Icove, K. Seger, W. VonStorch
 Computer Crime, 1st Edition,
 O'Reilly & Associates, Inc., 1995.
[16] J. Janacek
 Distributed Systems, (in Czech),
 Vydavatelstvi CVUT, 1993.
[17] D.S. Jones
 Elementary Information Theory,
 Clarendon Press, Oxford, 1979.
 [18] I. Jelinek
 Systems for Automation of Engineering Work, (in Czech)
 Edicni Stredisko CVUT, 1992.
[19] A. Leinwand, K. Fang Conroy
 Network Management, 2nd Edition
 Addison-Wesley Publishing Company, Inc., 1996.
[20] M. A. Ludwig
 The Little Black Book of Computer Viruses,
 American Eagle Publications, Inc., 1990.
[21] M. A. Ludwig
 Computer Viruses, Artificial Life and Evolution,
 American Eagle Publications, Inc., 1993.
[22] V. Marik, O. Stepankova, J. Lazansky and all
 Artificial Intelligence (1), (in Czech),
 Academia Praha, 1993.
[23] F.M. McNeill, E. Thro
 Fuzzy Logic, a Practical Approach,
 Academic Press, Inc., 1994.
[24] V. Novak
 Fuzzy Sets and Their Applications, (in Czech)
 Matematicky Seminar SNTL, 1990.
[25] Z. Pause
 Probability, Information, Stochastic Processes, (in Croatian)
 Skolska Knjiga - Zagreb, 1974.
[26] M. Raynal
 Distributed Algorithms and Protocols,
 John Wiley & Sons, 1988.
[27] W. Siler
 Building Fuzzy Expert Systems,
 http://members.aol.com/wsiler/index.htm
[28] V. Sinkovic
 Information, Symbolism and Semantics, (in Croatian)
 Skolska Knjiga - Zagreb, 1996.
[29] V. Sinkovic
 Information Networks, (in Croatian)
 Skolska Knjiga - Zagreb, 1994.
[30] R. Slade
 Robert Slade's Guide to Computer Viruses, 2nd Edition,
 Springer-Verlag New York, Inc., 1996.

 Bibliography

II - 3

[31] S. Stojakovic - Celustka
 Reliability Model for Computer Controlled Technical Systems with regard to
 Destructive programs, M.Sc. thesis (in Croatian)
 Faculty of Electrotechnical Engineering, Zagreb, 1992.
[32] J.W. Sutherland
 Systems, Analysis, Administration and Architecture,
 Van Nostrand Reinhold Company, 1975.
[33] J. Stecha
 Theory of Automatic Control I, (in Czech)
 Edicni Stredisko CVUT, 1990.
[34] P.Tvrdik
 Parallel Systems and Algorithms,
 Vydavatelstvi CVUT, 1995.
[35] K.P. Valavanis, G.N. Saridis
 Intelligent Robotic Systems: Theory, Design and Applications,
 Kluwer, 1992.
[36] Webster's New World Dictionary of the American Language, 2nd College
 Edition
 The World Publishing Company, 1970.
[37] L.A. Zadeh, K-S. Fu, K. Tanaka, M. Shimura
 Fuzzy Sets and Their Applications to Cognitive and Decision Processes,
 Proceedings of the US - Japan Seminar on Fuzzy Sets and Their Applications
 University of California, Berkeley, California, July 1-4, 1974.
[38] D. Zeltserman, G. Puoplo
 Building Network Management Tools with Tcl/Tk
 Prentice Hall PTR, 1998.

Papers and Electronic Publications:

[39] J.S. Balasubramaniyan, J.O. Garcia-Fernandez, D. Isacoff, E. Spafford,
 D. Zamboni
 An Architecture for Intrusion Detection using Autonomous Agents,
 COAST Technical Report 98/05, 1998.
[40] S.M. Bellovin
 Packets Found on an Internet,
 AT&T Bell Laboratories, 1993.
[41] S.M. Bellovin
 There Be Dragons,
 AT&T Bell Laboratories, 1992
[42] S.L. Braunstein
 Quantum Computation: a Tutorial,
 http://chemphys.weizmann.ac.il/~schmuel/comp/comp.html
[43] K. Brunnstein, S. Fischer-Huebner, M. Swimmer
 Concepts of an Expert System for Virus Detection,
 Information Security, Elsevier Science Publishers B.V. (North-Holland), IFIP,
 1991.

 Bibliography

II - 4

[44] D. E. Denning
 An Intrusion-Detection Model,
 Proceedings of 1986 Symposium on Security and Privacy, IEEE Computer
 Society, Oakland CA, April 1986.
[45] EMERALD - Event Monitoring Enabling Responses to Anomalous Live
 Disturbances, Conceptual Overview,
 http://www2.csl.sri.com/emerald/concepts.html
[46] FAQ (Frequently Asked Questions) - Computer Viruses, alt.comp.virus
 Version 1.05. Parts 1-4
 http://webworlds.co.uk/dharley/
[47] E.A. Fisch, U. Pooch, G. White
 The Design and Creation of a UNIX Based Automated Incident Response System,
 FIRST Computer Security Incident Handling Workshop, June 1997. Bristol, UK
[48] S. Fischer-Huebner
 A Formal Privacy-Model,
 University of Hamburg, Faculty for Informatics
[49] T.F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P.G. Neumann, C. Jalali
 IDES: A Progress Report
 Proceedings of the Sixth Annual Computer Security Applications Conference,
 Tucson, Arizona, December 1990.
[50] T.F. Lunt
 Detecting Intruders in Computer Systems,
 1993 Conference on Auditing and Computer Technology
[51] H.S. Lusted, R.B. Knapp
 Controlling Computers with Neural Signals,
 Scientific American, October 1996., pp. 58-63
[52] Increasing Security on IP Networks,
 http://www.cisco.com/univercd/cc/td/doc/cisintwk/ics/cs003.htm
[53] T. Martinez
 Models of Parallel Adaptive Logic,
 Proceedings of the 1987 Systems Man and Cybernetics Conference, pp 290-296
[54] T. Martinez
 Digital Neural Networks,
 Proceedings of the 1988 IEEE Systems Man and Cybernetics Conference,
 pp 681-684
[55] T. Martinez
 On the Expedient Use of Neural Networks,
 In Neural Networks, vol. 1, S1, p 552, 1988.
[56] D. Nauck, F. Klawonn, R. Kruse
 Fuzzy Sets, Fuzzy Controllers, and Neural Networks,
 Department of Computer Science, Technical University of Braunschweig
[57] D. Nauck, F. Klawonn, R. Kruse
 Combining Neural Networks and Fuzzy Controllers,
 Department of Computer Science, Technical University of Braunschweig
[58] D. Newman, H. Holzbaur, K. Bishop
 Firewalls: Don't Get Burned,
 Data Communications International, March 21, 1997. pp 37-53

 Bibliography

II - 5

[59] T.H. Ptacek, T.N. Newsham
 Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection,
 Secure Networks, Inc., January 1998.
[60] G.L. Rudolph, T.R. Martinez
 An Efficient Transformation for Implementing Two-layer Feedforward Neural
 Networks,
 Journal of Artificial Neural Networks, 1995.
[61] G.L. Rudolph, T.R. Martinez
 Location-Independent Transformations: A General Strategy for Implementing
 Neural Networks,
 International Journal on Artificial Intelligence Tools, vol. 3, No. 3, pp 417-427,
 1994.
[62] V. Scarani
 Quantum Computing,
 Institut de Physique Experimentale, Ecole Polytechnique Federale de Lausanne
[63] R.L Sharp, B.K. Yasaki
 A Multi-Level Secure TCP/IP,
 Information Security, Elsevier Science Publishers B.V. (North Holland), IFIP
 1991.
[64] S. Stojakovic-Celustka
 A Mathematical Model for the Computer Virus Infection Process,
 Proceedings of EICAR Conference '92, Siemens Nixdorf AG, Munich, Germany,
 December 1992.
[65] S. Stojakovic-Celustka
 Problems Anti-Viral Programs Encounter Today and Possible Ways to Avoid
 Them,
 Virus News International, September-December issue, 1993.
[66] S. Stojakovic-Celustka
 Vulnerabilities in Internet Services,
 Department of Computer Science & Engineering, Czech Technical University of
 Prague, 1993.
[67] S. Stojakovic-Celustka
 An Overview of Current and Possible Future Trends in Virus Writing, (Minimal
 thesis),
 Department of Computer Science & Engineering, Czech Technical University of
 Prague, 1995.
[68] S. Stojakovic-Celustka
 Automatized Adaptive Anti-Viral Protection,
 Proceedings of EICAR Conference '95, Gottlieb Duttweiler Institute, Zuerich,
 Switzerland, November 1995.
[69] S. Stojakovic-Celustka
 The Prospects of Incident Response,
 FIRST Computer Security Incident Handling Workshop, June 1998. Monterrey,
 Mexico
[70] S. Stojakovic-Celustka
 Intruder Detection,
 CARNet, Zagreb, 1998.

 Bibliography

II - 6

[71] M. Swimmer
 A Virus Intrusion Detection Expert System,
 Proceedings of EICAR Conference '95, Gottlieb Duttweiler Institute, Zuerich,
 Switzerland, November 1995.
[72] D. Ventura, T. Martinez
 An Artificial Neuron with Quantum Mechanical Properties,
 Neural Networks and Machine Learning Laboratory, Department of Computer
 Science, Brigham Young University, Provo, Utah, 1997.

	abstract.pdf
	Abstract

	acknow.pdf
	Acknowledgements

	contents.pdf
	Contents
	Part I
	Part II

	introduction.pdf
	INTRODUCTION
	MOTIVATION
	PROBLEM STATEMENT
	What is Information?
	Information Age
	Information Age and the Internet
	Information Security
	Why information security?
	What is information security?

	RELATED WORK
	CONTRIBUTION OF THE THESIS
	ORGANIZATION OF THE THESIS

	chapter1.pdf
	INFORMATION SYSTEMS
	1.1. Concept of Information
	Information System
	Computing System
	Information Networks
	Internet
	1.5.1. Internetworking Concept
	1.5.2. Internet Architecture
	1.5.3. Internet Protocol
	1.5.3.1. Protocol Layering
	1.5.3.2. Internet Services

	chapter2.pdf
	2. MISUSE OF INFORMATION � SYSTEMS
	
	2.1. Breaches to Physical Security
	2.2. Vulnerabilities in Internet Services
	2.2.1. Vulnerabilities in Network Level Services
	2.2.1.1. TCP Sequence Number Prediction

	2.2.1.2. SYN Flooding
	2.2.1.3. Distributed Denial of Service Attacks
	2.2.2. Vulnerabilities in Application Level Services
	2.2.2.1. Gaining Information about the System
	2.2.2.2. Getting Access
	2.2.2.3. Programmed Threats

	chapter3.pdf
	3. PROGRAMMED THREATS
	
	3.1. Non-reproducing Threats

	3.2. Self – reproducing Threats
	3.2.2. The Types of Viruses
	3.2.3. Examples of Viruses and Worms
	3.2.3.1. Concept
	3.2.3.2. Melissa
	3.2.3.3. Love Letter Worm
	3.2.3.3.1. Electronic Mail
	3.2.3.3.2. Internet Relay Chat
	3.2.3.3.3. Executing Files on Shared File Systems
	3.2.3.3.4. Reading USENET News
	3.2.3.3.5. Impact

	chapter4.pdf
	4. PROTECTION OF INFORMATION� SYSTEMS
	4.1. Prevention
	4.2. Active Protection
	4.2.1. Network and Internet Security
	4.2.1.1. Secure Modems
	4.2.1.2. Scanners
	4.2.1.3. Firewalls
	4.2.1.4. Sniffers

	4.2.2. Individual System Protection
	4.2.2.1. Auditing and Logging Tools
	4.2.2.2. Intruder detection

	4.2.3. Applications protection
	4.2.3.1. Anti-virus protection
	4.2.3.1.1. Activity monitors
	4.2.3.1.2. Integrity checkers
	4.2.3.1.3. Scanners

	4.3. Automated Adaptive Protection Systems
	4.3.1. Concept of Adaptive System
	4.3.2. Model of Desired Behavior (Security Model)
	4.3.3. Observing Elements
	4.3.4. Adaptive Mechanism
	4.3.5. Regulator
	4.3.6. Principal work

	chapter5.pdf
	5. VULNERABILITIES IN PRESENT� PROTECTION SYSTEMS
	5.1. Human Factors
	5.1.1. Controllability Problems
	5.1.1.1. Open-loop Control System
	5.1.1.2. Closed-loop Control System
	5.1.1.3. An Example
	5.1.1.4 Control Problems

	5.1.2. Problems in Definition of an Intrusion
	5.1.3. Problems in Definition of Self - Reproducing Threats

	5.2. Technical Problems
	5.2.1. Problems in Choice of Security Model
	5.2.2. Recognition Problems
	5.2.3. Problems in Choice of Criterion of Adaptation
	5.2.4. Performance Problems

	5.3. Inherent vulnerabilities in today’s computing� systems
	Von Neumann’s Architecture
	Binary Logic
	Internetworking

	chapter6.pdf
	6. SUMMARY AND CONCLUSIONS OF � PART I
	6.1. Summary
	6.2. Conclusions

	chapter3.pdf
	3. PROGRAMMED THREATS
	
	3.1. Non-reproducing Threats

	3.2. Self – reproducing Threats
	3.2.2. The Types of Viruses
	3.2.3. Examples of Viruses and Worms
	3.2.3.1. Concept
	3.2.3.2. Melissa
	3.2.3.3. Love Letter Worm
	3.2.3.3.1. Electronic Mail
	3.2.3.3.2. Internet Relay Chat
	3.2.3.3.3. Executing Files on Shared File Systems
	3.2.3.3.4. Reading USENET News
	3.2.3.3.5. Impact

	chapter4.pdf
	4. PROTECTION OF INFORMATION� SYSTEMS
	4.1. Prevention
	4.2. Active Protection
	4.2.1. Network and Internet Security
	4.2.1.1. Secure Modems
	4.2.1.2. Scanners
	4.2.1.3. Firewalls
	4.2.1.4. Sniffers

	4.2.2. Individual System Protection
	4.2.2.1. Auditing and Logging Tools
	4.2.2.2. Intruder detection

	4.2.3. Applications protection
	4.2.3.1. Anti-virus protection
	4.2.3.1.1. Activity monitors
	4.2.3.1.2. Integrity checkers
	4.2.3.1.3. Scanners

	4.3. Automated Adaptive Protection Systems
	4.3.1. Concept of Adaptive System
	4.3.2. Model of Desired Behavior (Security Model)
	4.3.3. Observing Elements
	4.3.4. Adaptive Mechanism
	4.3.5. Regulator
	4.3.6. Principal work

	chapter5.pdf
	5. VULNERABILITIES IN PRESENT� PROTECTION SYSTEMS
	5.1. Human Factors
	5.1.1. Controllability Problems
	5.1.1.1. Open-loop Control System
	5.1.1.2. Closed-loop Control System
	5.1.1.3. An Example
	5.1.1.4 Control Problems

	5.1.2. Problems in Definition of an Intrusion
	5.1.3. Problems in Definition of Self - Reproducing Threats

	5.2. Technical Problems
	5.2.1. Problems in Choice of Security Model
	5.2.2. Recognition Problems
	5.2.3. Problems in Choice of Criterion of Adaptation
	5.2.4. Performance Problems

	5.3. Inherent vulnerabilities in today’s computing� systems
	Von Neumann’s Architecture
	Binary Logic
	Internetworking

	chapter6.pdf
	6. SUMMARY AND CONCLUSIONS OF � PART I
	6.1. Summary
	6.2. Conclusions

	chapter7.pdf
	7. WHAT IS SECURE INFORMATION� SYSTEM?
	7.1. Semantic Definition of Information
	7.2. Observation of uncertainties in information
	7.3. Secure information
	7.4. Secure Information Systems

	chapter8.pdf
	8. AN ARCHITECTURE FOR� INTELLIGENT SECURITY SYSTEM
	8.1. Intelligent Security System
	8.2. System Architecture
	8.2.1. Logical Architecture
	8.2.2. Physical Architecture

	8.3. Components of the Architecture
	8.3.1. Observing elements
	8.3.2. Knowledge Acquisition Subsystem
	8.3.3. Knowledge Base
	8.3.4. Inference Engine
	8.3.5. Adaptation Subsystem
	8.3.6. Executive Elements

	8.4. Communication Mechanisms
	8.5. General Performance

	chapter9.pdf
	9. MODELING AN EXPERT SYSTEM
	9.1. Fuzzy Logic
	9.2. Fuzzy Expert System
	9.2.1. Designing a Fuzzy Expert System
	9.2.2. Rule-Based Reasoning
	9.2.3. Reasoning Patterns and Rule-Firing Schemes
	9.2.4. Fuzzification and Defuzzification

	chapter10.pdf
	10. IMPLEMENTING AN INTELLIGENT � SECURITY SYSTEM
	
	10.1. The Development Platforms, Programming Languages� and Tools
	10.2. General Structure
	10.3. Implementation of Observing Elements
	10.4. Implementation of Knowledge Acquisition Elements
	10.5. Implementation of Organization Level
	10.5.1. Knowledge database
	10.5.2. Inference Rules
	10.5.3. Reasoning Unit and Explanation Unit

	10.6. Implementation of Adaptation Subsystem
	10.7. Implementation of Executive Elements
	10.8. Lessons Learned

	chapter11.pdf
	11.BUILDING SECURE INFORMATION � SYSTEMS
	11.1. Conventional (von Neumann's) Architecture
	11.2. Networked Environments
	11.3. Parallel computing systems
	11.4. Neural Networks
	11.5. Quantum Computing Systems
	11.6. Other Aspects
	11.6.1. Human Interface and Security of Information � Systems
	11.6.2. Privacy Protection

	chapter12.pdf
	12. SUMMARY AND CONCLUSIONS OF � PART II
	12.1. Summary
	12.2. Conclusions

	chapter13.pdf
	13. SUMMARY, CONCLUSIONS AND � FURTHER WORK
	13.1. Summary
	13.2. Conclusions
	13.2.1. The Contributions of the Thesis

	13.3. Further Work

	appendixa.pdf
	APPENDIX A
	Glossary of Used Terms
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11

	appendixb.pdf
	APPENDIX B
	Prevention Methods
	B.1. Security Policy
	B.2. Security Standards
	B.3. Security Procedures
	B.4. Documentation Set
	B.5. Education and Training
	B.6. Checking
	B.7. Computer Laws

	appendixc.pdf
	APPENDIX C
	
	Source Code of Prototype Nisan

	biblio.pdf
	BIBLIOGRAPHY
	Books and Scripts:
	Papers and Electronic Publications:
	
	
	
	Fuzzy Sets, Fuzzy Controllers, and Neural Networks,
	Combining Neural Networks and Fuzzy Controllers,

